Logo AND Algorithmique Numérique Distribuée

Public GIT Repository
Discard the wakeup tree when ODPOR reaches a disabled transition
[simgrid.git] / src / mc / explo / odpor / WakeupTree.cpp
index 93cab13..73b2171 100644 (file)
 
 #include "src/mc/explo/odpor/WakeupTree.hpp"
 #include "src/mc/explo/odpor/Execution.hpp"
+#include "xbt/asserts.h"
+#include "xbt/string.hpp"
 
 #include <algorithm>
+#include <exception>
+#include <memory>
+#include <queue>
+
+XBT_LOG_NEW_DEFAULT_SUBCATEGORY(mc_wut, mc, "Logging specific to ODPOR WakeupTrees");
 
 namespace simgrid::mc::odpor {
 
-WakeupTree::WakeupTree() : root(nullptr) {}
+void WakeupTreeNode::add_child(WakeupTreeNode* node)
+{
+  this->children_.push_back(node);
+  node->parent_ = this;
+}
+
+std::string WakeupTreeNode::string_of_whole_tree(int indentation_level) const
+{
+  std::string tabulations = "";
+  for (int i = 0; i < indentation_level; i++)
+    tabulations += "  ";
+  std::string final_string = action_ == nullptr ? "<>\n"
+                                                : tabulations + "Actor " + std::to_string(action_->aid_) + ": " +
+                                                      action_->to_string(true) + "\n";
+  for (auto node : children_)
+    final_string += node->string_of_whole_tree(indentation_level + 1);
+  return final_string;
+}
+
+PartialExecution WakeupTreeNode::get_sequence() const
+{
+  // TODO: Prevent having to compute this at the node level
+  // and instead track this with the iterator
+  PartialExecution seq_;
+  const WakeupTreeNode* cur_node = this;
+  while (cur_node != nullptr && not cur_node->is_root()) {
+    seq_.push_front(cur_node->action_);
+    cur_node = cur_node->parent_;
+  }
+  return seq_;
+}
+
+void WakeupTreeNode::detatch_from_parent()
+{
+  if (parent_ != nullptr) {
+    // TODO: There may be a better method
+    // of keeping track of a node's reference to
+    // its parent, perhaps keeping track
+    // of a std::list<>::iterator instead.
+    // This would allow us to detach a node
+    // in O(1) instead of O(|children|) time
+    parent_->children_.remove(this);
+  }
+}
 
-WakeupTreeNode* WakeupTree::make_node(const ProcessSequence& u)
+WakeupTree::WakeupTree() : WakeupTree(std::make_unique<WakeupTreeNode>()) {}
+WakeupTree::WakeupTree(std::unique_ptr<WakeupTreeNode> root) : root_(root.get())
 {
-  auto node                = std::unique_ptr<WakeupTreeNode>(new WakeupTreeNode(u));
-  auto* node_handle        = node.get();
-  this->nodes_[node.get()] = std::move(node);
+  this->insert_node(std::move(root));
+}
+
+std::vector<std::string> WakeupTree::get_single_process_texts() const
+{
+  std::vector<std::string> trace;
+  for (const auto* child : root_->children_) {
+    const auto t = child->get_action();
+    auto message = xbt::string_printf("Actor %ld: %s", t->aid_, t->to_string(true).c_str());
+    trace.emplace_back(std::move(message));
+  }
+  return trace;
+}
+
+std::optional<aid_t> WakeupTree::get_min_single_process_actor() const
+{
+  if (const auto node = get_min_single_process_node(); node.has_value()) {
+    return node.value()->get_actor();
+  }
+  return std::nullopt;
+}
+
+std::optional<WakeupTreeNode*> WakeupTree::get_min_single_process_node() const
+{
+  if (empty()) {
+    return std::nullopt;
+  }
+  // INVARIANT: The induced post-order relation always places children
+  // in order before the parent. The list of children maintained by
+  // each node represents that ordering, and the first child of
+  // the root is by definition the smallest of the single-process nodes
+  xbt_assert(not this->root_->children_.empty(), "What the");
+  return this->root_->children_.front();
+}
+
+std::string WakeupTree::string_of_whole_tree() const
+{
+  return root_->string_of_whole_tree(0);
+}
+
+WakeupTree WakeupTree::make_subtree_rooted_at(WakeupTreeNode* root)
+{
+  // Perform a BFS search to perform a deep copy of the portion
+  // of the tree underneath and including `root`. Note that `root`
+  // is contained within the context of a *different* wakeup tree;
+  // hence, we have to be careful to update each node's children
+  // appropriately
+  auto subtree = WakeupTree();
+
+  std::list<std::pair<WakeupTreeNode*, WakeupTreeNode*>> frontier{std::make_pair(root, subtree.root_)};
+  while (not frontier.empty()) {
+    auto [node_in_other_tree, subtree_equivalent] = frontier.front();
+    frontier.pop_front();
+
+    // For each child of the node corresponding to that in `subtree`,
+    // make clones of each of its children and add them to `frontier`
+    // to that their children are added, and so on.
+    for (WakeupTreeNode* child_in_other_tree : node_in_other_tree->get_ordered_children()) {
+      WakeupTreeNode* child_equivalent = subtree.make_node(child_in_other_tree->get_action());
+      subtree_equivalent->add_child(child_equivalent);
+      frontier.push_back(std::make_pair(child_in_other_tree, child_equivalent));
+    }
+  }
+  return subtree;
+}
+
+void WakeupTree::remove_subtree_rooted_at(WakeupTreeNode* root)
+{
+  if (not contains(root)) {
+    throw std::invalid_argument("Attempting to remove a subtree pivoted from a node "
+                                "that is not contained in this wakeup tree");
+  }
+
+  std::list<WakeupTreeNode*> subtree_contents{root};
+  std::list<WakeupTreeNode*> frontier{root};
+  while (not frontier.empty()) {
+    const auto* node = frontier.front();
+    frontier.pop_front();
+    for (const auto& child : node->get_ordered_children()) {
+      frontier.push_back(child);
+      subtree_contents.push_back(child);
+    }
+  }
+
+  // After having found each node with BFS, now we can
+  // remove them. This prevents the "joys" of iteration during mutation.
+  // We also remove the `root` from being referenced by its own parent (since
+  // it will soon be destroyed)
+  root->detatch_from_parent();
+  for (WakeupTreeNode* node_to_remove : subtree_contents) {
+    this->remove_node(node_to_remove);
+  }
+}
+
+void WakeupTree::remove_subtree_at_aid(aid_t proc)
+{
+  for (const auto& child : root_->get_ordered_children())
+    if (child->get_actor() == proc) {
+      this->remove_subtree_rooted_at(child);
+      break;
+    }
+}
+
+void WakeupTree::remove_min_single_process_subtree()
+{
+  if (const auto node = get_min_single_process_node(); node.has_value()) {
+    remove_subtree_rooted_at(node.value());
+  }
+}
+
+bool WakeupTree::contains(const WakeupTreeNode* node) const
+{
+  return std::find_if(this->nodes_.begin(), this->nodes_.end(), [=](const auto& pair) { return pair.first == node; }) !=
+         this->nodes_.end();
+}
+
+WakeupTreeNode* WakeupTree::make_node(std::shared_ptr<Transition> u)
+{
+  auto node                 = std::make_unique<WakeupTreeNode>(std::move(u));
+  auto* node_handle         = node.get();
+  this->nodes_[node_handle] = std::move(node);
   return node_handle;
 }
 
-void WakeupTree::insert(const Execution& E, const ExecutionSequence& w)
+void WakeupTree::insert_node(std::unique_ptr<WakeupTreeNode> node)
+{
+  auto* node_handle         = node.get();
+  this->nodes_[node_handle] = std::move(node);
+}
+
+void WakeupTree::remove_node(WakeupTreeNode* node)
+{
+  this->nodes_.erase(node);
+}
+
+WakeupTree::InsertionResult WakeupTree::insert(const Execution& E, const PartialExecution& w)
 {
   // See section 6.2 of Abdulla. et al.'s 2017 ODPOR paper for details
 
@@ -31,15 +211,39 @@ void WakeupTree::insert(const Execution& E, const ExecutionSequence& w)
         shortest_sequence.has_value()) {
       // Insert the sequence as a child of `node`, but only
       // if the node is not already a leaf
-      if (not node->is_leaf()) {
-        WakeupTreeNode* new_node = this->make_node(shortest_sequence.value());
-        node->add_child(new_node);
+      if (not node->is_leaf() || node == this->root_) {
+        // NOTE: It's entirely possible that the shortest
+        // sequence we are inserting is empty. Consider the
+        // following two cases:
+        //
+        // 1. `w` is itself empty. Evidently, insertion succeeds but nothing needs
+        // to happen
+        //
+        // 2. a leaf node in the tree already contains `w` exactly.
+        // In this case, the empty `w'` returned (viz. `shortest_seq`)
+        // such that `w [=_[E] v.w'` would be empty
+        this->insert_sequence_after(node, shortest_sequence.value());
+        return node == this->root_ ? InsertionResult::root : InsertionResult::interior_node;
       }
       // Since we're following the post-order traversal of the tree,
       // the first such node we see is the smallest w.r.t "<"
-      return;
+      return InsertionResult::leaf;
     }
   }
+  xbt_die("Insertion should always succeed with the root node (which contains no "
+          "prior execution). If we've reached this point, this implies either that "
+          "the wakeup tree traversal is broken or that computation of the shortest "
+          "sequence to insert into the tree is broken");
+}
+
+void WakeupTree::insert_sequence_after(WakeupTreeNode* node, const PartialExecution& w)
+{
+  WakeupTreeNode* cur_node = node;
+  for (const auto& w_i : w) {
+    WakeupTreeNode* new_node = this->make_node(w_i);
+    cur_node->add_child(new_node);
+    cur_node = new_node;
+  }
 }
 
-} // namespace simgrid::mc::odpor
\ No newline at end of file
+} // namespace simgrid::mc::odpor