X-Git-Url: http://bilbo.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/38ffc837c5692a4d52e7610a67453a5335434bbd..19e1048a7009c4144b0f361ad85fb9dff44761ea:/examples/cpp/clusters-multicpu/s4u-clusters-multicpu.cpp diff --git a/examples/cpp/clusters-multicpu/s4u-clusters-multicpu.cpp b/examples/cpp/clusters-multicpu/s4u-clusters-multicpu.cpp index a473bcdf98..9feae83fb5 100644 --- a/examples/cpp/clusters-multicpu/s4u-clusters-multicpu.cpp +++ b/examples/cpp/clusters-multicpu/s4u-clusters-multicpu.cpp @@ -20,7 +20,7 @@ class Sender { std::vector hosts_; public: - explicit Sender(const std::vector hosts) : hosts_{hosts} {} + explicit Sender(const std::vector& hosts) : hosts_{hosts} {} void operator()() const { /* Vector in which we store all ongoing communications */ @@ -47,7 +47,7 @@ public: XBT_INFO("Done dispatching all messages"); /* Now that all message exchanges were initiated, wait for their completion in one single call */ - sg4::Comm::wait_all(&pending_comms); + sg4::Comm::wait_all(pending_comms); XBT_INFO("Goodbye now!"); } @@ -84,7 +84,7 @@ public: * CPU1 ... CPU8 * * @param zone Cluster netzone being created (usefull to create the hosts/links inside it) - * @param coord Coordinates in the torus (e.g. "0,0,0", "0,1,0") + * @param coord Coordinates in the cluster * @param id Internal identifier in the torus (for information) * @return netpoint, gateway: the netpoint to the StarZone and CPU0 as gateway */ @@ -110,22 +110,32 @@ create_hostzone(const sg4::NetZone* zone, const std::vector& /*coo /* the first CPU is the gateway */ if (i == 0) gateway = host; - /* create 2 links for a full-duplex communication */ - sg4::Link* link_up = host_zone->create_link("link-up-" + cpu_name, link_bw)->set_latency(link_lat)->seal(); - sg4::Link* link_down = host_zone->create_link("link-down-" + cpu_name, link_bw)->set_latency(link_lat)->seal(); - /* link UP, connection from CPU to outer world */ - host_zone->add_route(host->get_netpoint(), nullptr, nullptr, nullptr, {link_up}, false); - /* link DOWN, connection from outer to CPU */ - host_zone->add_route(nullptr, host->get_netpoint(), nullptr, nullptr, {link_down}, false); + /* create split-duplex link */ + sg4::SplitDuplexLink* link = host_zone->create_split_duplex_link("link-" + cpu_name, link_bw); + link->set_latency(link_lat)->seal(); + /* connecting CPU to outer world */ + host_zone->add_route(host->get_netpoint(), nullptr, nullptr, nullptr, + std::vector{{link, sg4::LinkInRoute::Direction::UP}}, true); } + /* seal newly created netzone */ + host_zone->seal(); return std::make_pair(host_zone->get_netpoint(), gateway->get_netpoint()); } /*************************************************************************************************/ /** * @brief Callback to create limiter link (1Gbs) for each netpoint + * + * The coord parameter depends on the cluster being created: + * - Torus: Direct translation of the Torus' dimensions, e.g. (0, 0, 0) for a 3-D Torus + * - Fat-Tree: A pair (level in the tree, id), e.g. (0, 0) for first leaf in the tree and (1,0) for the first switch at + * level 1. + * - Dragonfly: a tuple (group, chassis, blades/routers, nodes), e.g. (0, 0, 0, 0) for first node in the cluster. To + * identify the router inside a (group, chassis, blade), we use MAX_UINT in the last parameter (e.g. 0, 0, 0, + * 4294967295). + * * @param zone Torus netzone being created (usefull to create the hosts/links inside it) - * @param coord Coordinates in the torus (e.g. "0,0,0", "0,1,0") + * @param coord Coordinates in the cluster * @param id Internal identifier in the torus (for information) * @return Limiter link */ @@ -154,16 +164,16 @@ static sg4::Link* create_limiter(sg4::NetZone* zone, const std::vector A->limiter(A)->link(A-B)->limiter(B)->link(B-C)->C + * A->limiter(A)->link(A-B)->limiter(B)->link(B-C)->limiter(C)->C * * More precisely, considering that A and C are StarZones, a * communication from A-CPU-3 to C-CPU-7 goes through: * 1) StarZone A: A-CPU-3 -> link-up-A-CPU-3 -> A-CPU-0 - * 2) A-CPU-0->limiter(A)->link(A-B)->limiter(B)->link(B-C)->C-CPU-0 + * 2) A-CPU-0->limiter(A)->link(A-B)->limiter(B)->link(B-C)->limiter(C)->C-CPU-0 * 3) StarZone C: C-CPU-0-> link-down-C-CPU-7 -> C-CPU-7 * * Note that we don't have limiter links inside the StarZones(A, B, C), - * but we have limiters in the Torus that are added to the links in the path (as we can see in "2)"") + * but we have limiters in the Torus that are added to the links in the path (as we can see in "2)") * * More details in: Torus * Cluster @@ -182,25 +192,30 @@ static void create_torus_cluster() * * Creates a Fat-Tree cluster with 2 levels and 6 nodes * The following parameters are used to create this cluster: - * - Levels: 2 - two-level cluster - * - Down links: 2, 3 - L1 routers is connected to 2 elements, L2 routers to 3 elements - * - Up links: 1, 2 - Each node (A-F) is connected to 1 L2 router, L2 routers are connected to 2 L1 + * - Levels: 2 - two-level of switches in the cluster + * - Down links: 2, 3 - L2 routers is connected to 2 elements, L1 routers to 3 elements + * - Up links: 1, 2 - Each node (A-F) is connected to 1 L1 router, L1 routers are connected to 2 L2 * - Link count: 1, 1 - Use 1 link in each level * * The first parameter describes how many levels we have. * The following ones describe the connection between the elements and must have exactly n_levels components. * * - * S3 S4 <-- Level 1 routers - * / \ / \ - * / /\ \ - * link: 10GBps --> | / \ | - * (full-duplex) | / \ | - * S1 S2 <-- Level 2 routers - * link:10GBps --> / | \ / | \ + * S3 S4 <-- Level 2 routers + * link:limiter - / \ / \ + * + ++ + + * link: 10GBps --> | / \ | + * (full-duplex) | / \ | + * + + + + + * | / \ | + * S1 S2 <-- Level 1 routers + * link:limiter -> | | + * + + + * link:10GBps --> /|\ /|\ + * / | \ / | \ * + + + + + + * link:limiter -> / | \ / | \ - * A B C D E F <-- Nodes + * A B C D E F <-- level 0 Nodes * * Each element (A to F) is a StarZone containing 8 Hosts. * The connection uses 2 links: @@ -208,16 +223,14 @@ static void create_torus_cluster() * 2) link: 10Gbs link connecting the components (created automatically) * * For example, a communication from A to C goes through: - * A->limiter(A)->link(A-S1)->link(S1-C)->->limiter(C)->C + * A->limiter(A)->link(A-S1)->limiter(S1)->link(S1-C)->->limiter(C)->C * * More precisely, considering that A and C are StarZones, a * communication from A-CPU-3 to C-CPU-7 goes through: * 1) StarZone A: A-CPU-3 -> link-up-A-CPU-3 -> A-CPU-0 - * 2) A-CPU-0->limiter(A)->link(A-S1)->link(S1-C)->limiter(C)->C-CPU-0 + * 2) A-CPU-0->limiter(A)->link(A-S1)->limiter(S1)->link(S1-C)->limiter(C)->C-CPU-0 * 3) StarZone C: C-CPU-0-> link-down-C-CPU-7 -> C-CPU-7 * - * Note that limiters are only valid for leaves, not routers. - * * More details in: Fat-Tree * Cluster */ @@ -257,14 +270,12 @@ static void create_fatTree_cluster() * Group 1 * * Each element (A, B, C, etc) is a StarZone containing 8 Hosts. - * The connection between nodes and routers (e.g. A->R1) uses 2 links: + * The connection between elements (e.g. A->R1) uses 2 links: * 1) limiter: a 1Gbs limiter link (set by user through the set_limiter callback) * 2) link: 10Gbs link connecting the components (created automatically) * * For example, a communication from A to C goes through: - * A->limiter(A)->link(A-R1)->link(R1-R2)->limiter(C)->C - * - * Note that limiters are only valid for leaves, not routers. + * A->limiter(A)->link(A-R1)->limiter(R1)->link(R1-R2)->limiter(R2)->link(R2-C)limiter(C)->C * * More details in: Dragonfly * Cluster