X-Git-Url: http://bilbo.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/ab812bcd379b50be4c73f2463e44c00914bae616..514576f5a568bd452cb00faf460f191a07773d52:/src/simdag/sd_task.cpp diff --git a/src/simdag/sd_task.cpp b/src/simdag/sd_task.cpp index 732cf70b6c..23eb24cd19 100644 --- a/src/simdag/sd_task.cpp +++ b/src/simdag/sd_task.cpp @@ -1,968 +1,952 @@ -/* Copyright (c) 2006-2016. The SimGrid Team. +/* Copyright (c) 2006-2021. The SimGrid Team. * All rights reserved. */ /* This program is free software; you can redistribute it and/or modify it * under the terms of the license (GNU LGPL) which comes with this package. */ #include "simdag_private.hpp" +#include "simgrid/kernel/routing/NetPoint.hpp" #include "src/surf/HostImpl.hpp" #include "src/surf/surf_interface.hpp" +#include XBT_LOG_NEW_DEFAULT_SUBCATEGORY(sd_task, sd, "Logging specific to SimDag (task)"); -/* Destroys the data memorized by SD_task_schedule. Task state must be SD_SCHEDULED or SD_RUNNABLE. */ -static void __SD_task_destroy_scheduling_data(SD_task_t task) +namespace simgrid { + +template class xbt::Extendable; + +namespace sd { + +Task* Task::create(const std::string& name, double amount, void* userdata) { - if (task->state != SD_SCHEDULED && task->state != SD_RUNNABLE) - THROWF(arg_error, 0, "Task '%s' must be SD_SCHEDULED or SD_RUNNABLE", SD_task_get_name(task)); + auto task = new Task(); + task->set_name(name); + task->set_amount(amount); + task->set_data(userdata); + task->allocation_ = new std::vector(); + sd_global->initial_tasks.insert(task); - xbt_free(task->flops_amount); - xbt_free(task->bytes_amount); - task->bytes_amount = nullptr; - task->flops_amount = nullptr; + return task; } -/** - * \brief Creates a new task. - * - * \param name the name of the task (can be \c nullptr) - * \param data the user data you want to associate with the task (can be \c nullptr) - * \param amount amount of the task - * \return the new task - * \see SD_task_destroy() - */ -SD_task_t SD_task_create(const char *name, void *data, double amount) -{ - SD_task_t task = xbt_new0(s_SD_task_t, 1); - task->kind = SD_TASK_NOT_TYPED; - task->state= SD_NOT_SCHEDULED; - sd_global->initial_tasks->insert(task); - - task->marked = 0; - task->start_time = -1.0; - task->finish_time = -1.0; - task->surf_action = nullptr; - task->watch_points = 0; - - task->inputs = new std::set(); - task->outputs = new std::set(); - task->predecessors = new std::set(); - task->successors = new std::set(); - - task->data = data; - task->name = xbt_strdup(name); - task->amount = amount; - task->allocation = new std::vector(); - task->rate = -1; +Task* Task::create_comm_e2e(const std::string& name, double amount, void* userdata) +{ + auto task = create(name, amount, userdata); + task->bytes_amount_ = xbt_new0(double, 4); + task->bytes_amount_[2] = amount; + task->set_kind(SD_TASK_COMM_E2E); + return task; } -static inline SD_task_t SD_task_create_sized(const char *name, void *data, double amount, int count) +Task* Task::create_comp_seq(const std::string& name, double amount, void* userdata) { - SD_task_t task = SD_task_create(name, data, amount); - task->bytes_amount = xbt_new0(double, count * count); - task->flops_amount = xbt_new0(double, count); + auto task = create(name, amount, userdata); + task->flops_amount_ = xbt_new0(double, 1); + task->flops_amount_[0] = amount; + task->set_kind(SD_TASK_COMP_SEQ); + return task; } -/** @brief create a end-to-end communication task that can then be auto-scheduled - * - * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows to specify the task costs at - * creation, and decouple them from the scheduling process where you just specify which resource should deliver the - * mandatory power. - * - * A end-to-end communication must be scheduled on 2 hosts, and the amount specified at creation is sent from hosts[0] - * to hosts[1]. - */ -SD_task_t SD_task_create_comm_e2e(const char *name, void *data, double amount) +Task* Task::create_comp_par_amdahl(const std::string& name, double amount, void* userdata, double alpha) { - SD_task_t res = SD_task_create_sized(name, data, amount, 2); - res->bytes_amount[2] = amount; - res->kind = SD_TASK_COMM_E2E; + xbt_assert(alpha < 1. && alpha >= 0., "Invalid parameter: alpha must be in [0.;1.["); - return res; + auto task = create(name, amount, userdata); + task->set_alpha(alpha); + task->set_kind(SD_TASK_COMP_PAR_AMDAHL); + + return task; } -/** @brief create a sequential computation task that can then be auto-scheduled - * - * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows to specify the task costs at - * creation, and decouple them from the scheduling process where you just specify which resource should deliver the - * mandatory power. - * - * A sequential computation must be scheduled on 1 host, and the amount specified at creation to be run on hosts[0]. - * - * \param name the name of the task (can be \c nullptr) - * \param data the user data you want to associate with the task (can be \c nullptr) - * \param flops_amount amount of compute work to be done by the task - * \return the new SD_TASK_COMP_SEQ typed task - */ -SD_task_t SD_task_create_comp_seq(const char *name, void *data, double flops_amount) +Task* Task::create_comm_par_mxn_1d_block(const std::string& name, double amount, void* userdata) { - SD_task_t res = SD_task_create_sized(name, data, flops_amount, 1); - res->flops_amount[0] = flops_amount; - res->kind = SD_TASK_COMP_SEQ; + auto task = create(name, amount, userdata); + task->set_kind(SD_TASK_COMM_PAR_MXN_1D_BLOCK); - return res; + return task; } -/** @brief create a parallel computation task that can then be auto-scheduled - * - * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows to specify the task costs at - * creation, and decouple them from the scheduling process where you just specify which resource should deliver the - * mandatory power. - * - * A parallel computation can be scheduled on any number of host. - * The underlying speedup model is Amdahl's law. - * To be auto-scheduled, \see SD_task_distribute_comp_amdahl has to be called first. - * \param name the name of the task (can be \c nullptr) - * \param data the user data you want to associate with the task (can be \c nullptr) - * \param flops_amount amount of compute work to be done by the task - * \param alpha purely serial fraction of the work to be done (in [0.;1.[) - * \return the new task - */ -SD_task_t SD_task_create_comp_par_amdahl(const char *name, void *data, double flops_amount, double alpha) +void Task::distribute_comp_amdahl(unsigned long count) { - xbt_assert(alpha < 1. && alpha >= 0., "Invalid parameter: alpha must be in [0.;1.["); + xbt_assert(kind_ == SD_TASK_COMP_PAR_AMDAHL, + "Task %s is not a SD_TASK_COMP_PAR_AMDAHL typed task." + "Cannot use this function.", + get_cname()); + flops_amount_ = xbt_new0(double, count); + for (unsigned long i = 0; i < count; i++) + flops_amount_[i] = (alpha_ + (1 - alpha_) / count) * amount_; +} - SD_task_t res = SD_task_create(name, data, flops_amount); - res->alpha = alpha; - res->kind = SD_TASK_COMP_PAR_AMDAHL; +void Task::build_MxN_1D_block_matrix(unsigned long src_nb, unsigned long dst_nb) +{ + xbt_assert(kind_ == SD_TASK_COMM_PAR_MXN_1D_BLOCK, + "Task %s is not a SD_TASK_COMM_PAR_MXN_1D_BLOCK typed task." + "Cannot use this function.", + get_cname()); + xbt_free(bytes_amount_); + bytes_amount_ = xbt_new0(double, allocation_->size() * allocation_->size()); - return res; + for (unsigned long i = 0; i < src_nb; i++) { + double src_start = i * amount_ / src_nb; + double src_end = src_start + amount_ / src_nb; + for (unsigned long j = 0; j < dst_nb; j++) { + double dst_start = j * amount_ / dst_nb; + double dst_end = dst_start + amount_ / dst_nb; + XBT_VERB("(%lu->%lu): (%.2f, %.2f)-> (%.2f, %.2f)", i, j, src_start, src_end, dst_start, dst_end); + bytes_amount_[i * (src_nb + dst_nb) + src_nb + j] = 0.0; + if ((src_end > dst_start) && (dst_end > src_start)) { /* There is something to send */ + bytes_amount_[i * (src_nb + dst_nb) + src_nb + j] = std::min(src_end, dst_end) - std::max(src_start, dst_start); + XBT_VERB("==> %.2f", bytes_amount_[i * (src_nb + dst_nb) + src_nb + j]); + } + } + } } -/** @brief create a complex data redistribution task that can then be auto-scheduled - * - * Auto-scheduling mean that the task can be used with SD_task_schedulev(). - * This allows to specify the task costs at creation, and decouple them from the scheduling process where you just - * specify which resource should communicate. - * - * A data redistribution can be scheduled on any number of host. - * The assumed distribution is a 1D block distribution. Each host owns the same share of the \see amount. - * To be auto-scheduled, \see SD_task_distribute_comm_mxn_1d_block has to be called first. - * \param name the name of the task (can be \c nullptr) - * \param data the user data you want to associate with the task (can be \c nullptr) - * \param amount amount of data to redistribute by the task - * \return the new task - */ -SD_task_t SD_task_create_comm_par_mxn_1d_block(const char *name, void *data, double amount) +void Task::dependency_add(Task* task) { - SD_task_t res = SD_task_create(name, data, amount); - res->kind = SD_TASK_COMM_PAR_MXN_1D_BLOCK; + if (this == task) + throw std::invalid_argument( + simgrid::xbt::string_printf("Cannot add a dependency between task '%s' and itself", get_cname())); - return res; + if (state_ == SD_DONE || state_ == SD_FAILED) + throw std::invalid_argument(simgrid::xbt::string_printf( + "Task '%s' must be SD_NOT_SCHEDULED, SD_SCHEDULABLE, SD_SCHEDULED, SD_RUNNABLE, or SD_RUNNING", get_cname())); + + if (task->get_state() == SD_DONE || task->get_state() == SD_FAILED || task->get_state() == SD_RUNNING) + throw std::invalid_argument(simgrid::xbt::string_printf( + "Task '%s' must be SD_NOT_SCHEDULED, SD_SCHEDULABLE, SD_SCHEDULED, or SD_RUNNABLE", task->get_cname())); + + if (dependency_exist(task)) + throw std::invalid_argument(simgrid::xbt::string_printf( + "A dependency already exists between task '%s' and task '%s'", get_cname(), task->get_cname())); + + successors_.push_back(task); + task->dependencies_.insert({this}); + + /* if 'task' was runnable, it goes back to the SD_SCHEDULED state because of the new dependency*/ + if (task->get_state() == SD_RUNNABLE) { + XBT_DEBUG("SD_task_dependency_add: %s was runnable and becomes scheduled!", task->get_cname()); + task->set_state(SD_SCHEDULED); + } } -/** - * \brief Destroys a task. - * - * The user data (if any) should have been destroyed first. - * - * \param task the task you want to destroy - * \see SD_task_create() - */ -void SD_task_destroy(SD_task_t task) +bool Task::dependency_exist(Task* task) const { - XBT_DEBUG("Destroying task %s...", SD_task_get_name(task)); + return (std::find(successors_.begin(), successors_.end(), task) != successors_.end() || + dependencies_.find(task) != dependencies_.end()); +} - /* First Remove all dependencies associated with the task. */ - while (not task->predecessors->empty()) - SD_task_dependency_remove(*(task->predecessors->begin()), task); - while (not task->inputs->empty()) - SD_task_dependency_remove(*(task->inputs->begin()), task); - while (not task->successors->empty()) - SD_task_dependency_remove(task, *(task->successors->begin())); - while (not task->outputs->empty()) - SD_task_dependency_remove(task, *(task->outputs->begin())); - - if (task->state == SD_SCHEDULED || task->state == SD_RUNNABLE) - __SD_task_destroy_scheduling_data(task); - - xbt_free(task->name); - - if (task->surf_action != nullptr) - task->surf_action->unref(); - - delete task->allocation; - xbt_free(task->bytes_amount); - xbt_free(task->flops_amount); - delete task->inputs; - delete task->outputs; - delete task->predecessors; - delete task->successors; - xbt_free(task); +void Task::dependency_remove(Task* task) +{ + if (this == task) + throw std::invalid_argument("Cannot ask to remove itself from successors"); - XBT_DEBUG("Task destroyed."); + auto p = std::find(successors_.begin(), successors_.end(), task); + if (p != successors_.end()) { + successors_.erase(p); + task->dependencies_.erase({this}); + } else + throw std::invalid_argument(simgrid::xbt::string_printf( + "No dependency found between task '%s' and '%s': task '%s' is not a successor of task '%s'", get_cname(), + task->get_cname(), task->get_cname(), get_cname())); + + /* if 'task' was scheduled and dependencies are satisfied, we can make it runnable */ + if (task->has_unsolved_dependencies() == 0 && task->get_state() == SD_SCHEDULED) + task->set_state(SD_RUNNABLE); } -/** - * \brief Returns the user data of a task - * - * \param task a task - * \return the user data associated with this task (can be \c nullptr) - * \see SD_task_set_data() - */ -void *SD_task_get_data(SD_task_t task) +std::set Task::get_predecessors() const { - return task->data; + std::set res; + for (const auto& d : dependencies_) + if (d->get_kind() == SD_TASK_COMP_SEQ || d->get_kind() == SD_TASK_COMP_PAR_AMDAHL) + res.insert(d); + return res; } -/** - * \brief Sets the user data of a task - * - * The new data can be \c nullptr. The old data should have been freed first, if it was not \c nullptr. - * - * \param task a task - * \param data the new data you want to associate with this task - * \see SD_task_get_data() - */ -void SD_task_set_data(SD_task_t task, void *data) +std::set Task::get_inputs() const { - task->data = data; + std::set res; + for (const auto& d : dependencies_) + if (d->get_kind() == SD_TASK_COMM_E2E || d->get_kind() == SD_TASK_COMM_PAR_MXN_1D_BLOCK) + res.insert(d); + return res; } -/** - * \brief Sets the rate of a task - * - * This will change the network bandwidth a task can use. This rate cannot be dynamically changed. Once the task has - * started, this call is ineffective. This rate depends on both the nominal bandwidth on the route onto which the task - * is scheduled (\see SD_task_get_current_bandwidth) and the amount of data to transfer. - * - * To divide the nominal bandwidth by 2, the rate then has to be : - * rate = bandwidth/(2*amount) - * - * \param task a \see SD_TASK_COMM_E2E task (end-to-end communication) - * \param rate the new rate you want to associate with this task. - */ -void SD_task_set_rate(SD_task_t task, double rate) +std::vector Task::get_outputs() const { - xbt_assert(task->kind == SD_TASK_COMM_E2E, "The rate can be modified for end-to-end communications only."); - if(task->state < SD_RUNNING) { - task->rate = rate; - } else { - XBT_WARN("Task %p has started. Changing rate is ineffective.", task); + std::vector res; + for (const auto& d : successors_) + if (d->get_kind() == SD_TASK_COMM_E2E || d->get_kind() == SD_TASK_COMM_PAR_MXN_1D_BLOCK) + res.push_back(d); + return res; +} + +void Task::set_amount(double amount) +{ + amount_ = amount; + if (kind_ == SD_TASK_COMP_SEQ) + flops_amount_[0] = amount; + if (kind_ == SD_TASK_COMM_E2E) { + bytes_amount_[2] = amount; } } -/** - * \brief Returns the state of a task - * - * \param task a task - * \return the current \ref e_SD_task_state_t "state" of this task: - * #SD_NOT_SCHEDULED, #SD_SCHEDULED, #SD_RUNNABLE, #SD_RUNNING, #SD_DONE or #SD_FAILED - * \see e_SD_task_state_t - */ -e_SD_task_state_t SD_task_get_state(SD_task_t task) +void Task::set_rate(double rate) { - return task->state; + xbt_assert(kind_ == SD_TASK_COMM_E2E, "The rate can be modified for end-to-end communications only."); + if (state_ < SD_RUNNING) { + rate_ = rate; + } else { + XBT_WARN("Task %p has started. Changing rate is ineffective.", this); + } } -/* Changes the state of a task. Updates the sd_global->watch_point_reached flag. - */ -void SD_task_set_state(SD_task_t task, e_SD_task_state_t new_state) +void Task::set_state(e_SD_task_state_t new_state) { - std::set::iterator idx; - XBT_DEBUG("Set state of '%s' to %d", task->name, new_state); - if ((new_state == SD_NOT_SCHEDULED || new_state == SD_SCHEDULABLE) && task->state == SD_FAILED){ - sd_global->completed_tasks->erase(task); - sd_global->initial_tasks->insert(task); + std::set::iterator idx; + XBT_DEBUG("Set state of '%s' to %d", get_cname(), new_state); + if ((new_state == SD_NOT_SCHEDULED || new_state == SD_SCHEDULABLE) && state_ == SD_FAILED) { + sd_global->completed_tasks.erase(this); + sd_global->initial_tasks.insert(this); } - if (new_state == SD_SCHEDULED && task->state == SD_RUNNABLE){ - sd_global->initial_tasks->insert(task); - sd_global->runnable_tasks->erase(task); + if (new_state == SD_SCHEDULED && state_ == SD_RUNNABLE) { + sd_global->initial_tasks.insert(this); + sd_global->runnable_tasks.erase(this); } - if (new_state == SD_RUNNABLE){ - idx = sd_global->initial_tasks->find(task); - if (idx != sd_global->initial_tasks->end()) { - sd_global->runnable_tasks->insert(*idx); - sd_global->initial_tasks->erase(idx); + if (new_state == SD_RUNNABLE) { + idx = sd_global->initial_tasks.find(this); + if (idx != sd_global->initial_tasks.end()) { + sd_global->runnable_tasks.insert(*idx); + sd_global->initial_tasks.erase(idx); } } if (new_state == SD_RUNNING) - sd_global->runnable_tasks->erase(task); + sd_global->runnable_tasks.erase(this); - if (new_state == SD_DONE || new_state == SD_FAILED){ - sd_global->completed_tasks->insert(task); - task->start_time = task->surf_action->getStartTime(); - if (new_state == SD_DONE){ - task->finish_time = task->surf_action->getFinishTime(); + if (new_state == SD_DONE || new_state == SD_FAILED) { + sd_global->completed_tasks.insert(this); + start_time_ = surf_action_->get_start_time(); + if (new_state == SD_DONE) { + finish_time_ = surf_action_->get_finish_time(); #if SIMGRID_HAVE_JEDULE - jedule_log_sd_event(task); + jedule_log_sd_event(this); #endif } else - task->finish_time = surf_get_clock(); - task->surf_action->unref(); - task->surf_action = nullptr; - task->allocation->clear(); + finish_time_ = simgrid_get_clock(); + surf_action_->unref(); + surf_action_ = nullptr; + allocation_->clear(); } - task->state = new_state; + state_ = new_state; - if (task->watch_points & new_state) { - XBT_VERB("Watch point reached with task '%s'!", task->name); + if (watch_points_ & new_state) { + XBT_VERB("Watch point reached with task '%s'!", get_cname()); sd_global->watch_point_reached = true; - SD_task_unwatch(task, new_state); /* remove the watch point */ + unwatch(new_state); /* remove the watch point */ } } -/** - * \brief Returns the name of a task - * - * \param task a task - * \return the name of this task (can be \c nullptr) - */ -const char *SD_task_get_name(SD_task_t task) +double Task::get_remaining_amount() const { - return task->name; + if (surf_action_) + return surf_action_->get_remains(); + else + return (state_ == SD_DONE) ? 0 : amount_; } -/** @brief Allows to change the name of a task */ -void SD_task_set_name(SD_task_t task, const char *name) +double Task::get_start_time() const { - xbt_free(task->name); - task->name = xbt_strdup(name); + return surf_action_ ? surf_action_->get_start_time() : start_time_; } -/** @brief Returns the dynar of the parents of a task - * - * \param task a task - * \return a newly allocated dynar comprising the parents of this task - */ - -xbt_dynar_t SD_task_get_parents(SD_task_t task) +double Task::get_finish_time() const { - xbt_dynar_t parents = xbt_dynar_new(sizeof(SD_task_t), nullptr); - - for (auto it : *task->predecessors) - xbt_dynar_push(parents, &it); - for (auto it : *task->inputs) - xbt_dynar_push(parents, &it); - - return parents; + if (surf_action_) /* should never happen as actions are destroyed right after their completion */ + return surf_action_->get_finish_time(); + else + return finish_time_; } -/** @brief Returns the dynar of the parents of a task - * - * \param task a task - * \return a newly allocated dynar comprising the parents of this task - */ -xbt_dynar_t SD_task_get_children(SD_task_t task) +void Task::set_sender_side_allocation(unsigned long count, const std::vector* sender) { - xbt_dynar_t children = xbt_dynar_new(sizeof(SD_task_t), nullptr); - - for (auto it : *task->successors) - xbt_dynar_push(children, &it); - for (auto it : *task->outputs) - xbt_dynar_push(children, &it); - - return children; + for (unsigned long i = 0; i < count; i++) + allocation_->push_back(sender->at(i)); } -/** - * \brief Returns the number of workstations involved in a task - * - * Only call this on already scheduled tasks! - * \param task a task - */ -int SD_task_get_workstation_count(SD_task_t task) +void Task::set_receiver_side_allocation(unsigned long count, const std::vector* receiver) { - return task->allocation->size(); + for (unsigned long i = 0; i < count; i++) + allocation_->insert(allocation_->begin() + i, receiver->at(i)); } -/** - * \brief Returns the list of workstations involved in a task - * - * Only call this on already scheduled tasks! - * \param task a task - */ -sg_host_t *SD_task_get_workstation_list(SD_task_t task) +void Task::watch(e_SD_task_state_t state) { - return task->allocation->data(); + if (state & SD_NOT_SCHEDULED) + throw std::invalid_argument("Cannot add a watch point for state SD_NOT_SCHEDULED"); + + watch_points_ = watch_points_ | state; } -/** - * \brief Returns the total amount of work contained in a task - * - * \param task a task - * \return the total amount of work (computation or data transfer) for this task - * \see SD_task_get_remaining_amount() - */ -double SD_task_get_amount(SD_task_t task) +void Task::unwatch(e_SD_task_state_t state) { - return task->amount; + xbt_assert(state != SD_NOT_SCHEDULED, "SimDag error: Cannot have a watch point for state SD_NOT_SCHEDULED"); + watch_points_ = watch_points_ & ~state; } -/** @brief Sets the total amount of work of a task - * For sequential typed tasks (COMP_SEQ and COMM_E2E), it also sets the appropriate values in the flops_amount and - * bytes_amount arrays respectively. Nothing more than modifying task->amount is done for parallel typed tasks - * (COMP_PAR_AMDAHL and COMM_PAR_MXN_1D_BLOCK) as the distribution of the amount of work is done at scheduling time. - * - * \param task a task - * \param amount the new amount of work to execute - */ -void SD_task_set_amount(SD_task_t task, double amount) +void Task::dump() const { - task->amount = amount; - if (task->kind == SD_TASK_COMP_SEQ) - task->flops_amount[0] = amount; - if (task->kind == SD_TASK_COMM_E2E) - task->bytes_amount[2] = amount; + XBT_INFO("Displaying task %s", get_cname()); + if (state_ == SD_RUNNABLE) + XBT_INFO(" - state: runnable"); + else if (state_ < SD_RUNNABLE) + XBT_INFO(" - state: %s not runnable", __get_state_name(state_)); + else + XBT_INFO(" - state: not runnable %s", __get_state_name(state_)); + + if (kind_ != 0) { + switch (kind_) { + case SD_TASK_COMM_E2E: + XBT_INFO(" - kind: end-to-end communication"); + break; + case SD_TASK_COMP_SEQ: + XBT_INFO(" - kind: sequential computation"); + break; + case SD_TASK_COMP_PAR_AMDAHL: + XBT_INFO(" - kind: parallel computation following Amdahl's law"); + break; + case SD_TASK_COMM_PAR_MXN_1D_BLOCK: + XBT_INFO(" - kind: MxN data redistribution assuming 1D block distribution"); + break; + default: + XBT_INFO(" - (unknown kind %d)", kind_); + } + } + + XBT_INFO(" - amount: %.0f", amount_); + if (kind_ == SD_TASK_COMP_PAR_AMDAHL) + XBT_INFO(" - alpha: %.2f", alpha_); + XBT_INFO(" - Dependencies to satisfy: %lu", has_unsolved_dependencies()); + if (has_unsolved_dependencies() > 0) { + XBT_INFO(" - pre-dependencies:"); + for (auto const& it : dependencies_) + XBT_INFO(" %s", it->get_cname()); + } + if (is_waited_by() > 0) { + XBT_INFO(" - post-dependencies:"); + + for (auto const& it : successors_) + XBT_INFO(" %s", it->get_cname()); + } } -/** - * \brief Returns the alpha parameter of a SD_TASK_COMP_PAR_AMDAHL task - * - * \param task a parallel task assuming Amdahl's law as speedup model - * \return the alpha parameter (serial part of a task in percent) for this task - */ -double SD_task_get_alpha(SD_task_t task) +void Task::released_by(Task* pred) { - xbt_assert(SD_task_get_kind(task) == SD_TASK_COMP_PAR_AMDAHL, "Alpha parameter is not defined for this kind of task"); - return task->alpha; + dependencies_.erase(pred); + XBT_DEBUG("Release dependency on %s: %lu remain(s). Becomes schedulable if %zu=0", get_cname(), + has_unsolved_dependencies(), get_predecessors().size()); + + if (state_ == SD_NOT_SCHEDULED && get_predecessors().empty()) + set_state(SD_SCHEDULABLE); + + if (state_ == SD_SCHEDULED && has_unsolved_dependencies() == 0) + set_state(SD_RUNNABLE); + + if (state_ == SD_RUNNABLE && not sd_global->watch_point_reached) + run(); } -/** - * \brief Returns the remaining amount work to do till the completion of a task - * - * \param task a task - * \return the remaining amount of work (computation or data transfer) of this task - * \see SD_task_get_amount() - */ -double SD_task_get_remaining_amount(SD_task_t task) +void Task::produced_by(Task* pred) { - if (task->surf_action) - return task->surf_action->getRemains(); + if (state_ == SD_RUNNABLE) + return; + + start_time_ = pred->get_finish_time(); + dependencies_.erase(pred); + if (state_ == SD_SCHEDULED) + set_state(SD_RUNNABLE); else - return (task->state == SD_DONE) ? 0 : task->amount; + set_state(SD_SCHEDULABLE); + + Task* comm_dst = *(successors_.begin()); + if (comm_dst->get_state() == SD_NOT_SCHEDULED && comm_dst->get_predecessors().empty()) { + XBT_DEBUG("%s is a transfer, %s may be ready now if %zu=0", get_cname(), comm_dst->get_cname(), + comm_dst->get_predecessors().size()); + comm_dst->set_state(SD_SCHEDULABLE); + } + if (state_ == SD_RUNNABLE && not sd_global->watch_point_reached) + run(); } -e_SD_task_kind_t SD_task_get_kind(SD_task_t task) +void Task::do_schedule() { - return task->kind; + if (state_ > SD_SCHEDULABLE) + throw std::invalid_argument(simgrid::xbt::string_printf("Task '%s' has already been scheduled", get_cname())); + + if (has_unsolved_dependencies() == 0) + set_state(SD_RUNNABLE); + else + set_state(SD_SCHEDULED); } -/** @brief Displays debugging information about a task */ -void SD_task_dump(SD_task_t task) +void Task::schedule(const std::vector& hosts, const double* flops_amount, const double* bytes_amount, + double rate) { - XBT_INFO("Displaying task %s", SD_task_get_name(task)); - if (task->state == SD_RUNNABLE) - XBT_INFO(" - state: runnable"); - else if (task->state < SD_RUNNABLE) - XBT_INFO(" - state: %s not runnable", __get_state_name(task->state)); - else - XBT_INFO(" - state: not runnable %s", __get_state_name(task->state)); + unsigned long host_count = hosts.size(); + rate_ = rate; - if (task->kind != 0) { - switch (task->kind) { - case SD_TASK_COMM_E2E: - XBT_INFO(" - kind: end-to-end communication"); - break; - case SD_TASK_COMP_SEQ: - XBT_INFO(" - kind: sequential computation"); - break; - case SD_TASK_COMP_PAR_AMDAHL: - XBT_INFO(" - kind: parallel computation following Amdahl's law"); - break; - case SD_TASK_COMM_PAR_MXN_1D_BLOCK: - XBT_INFO(" - kind: MxN data redistribution assuming 1D block distribution"); - break; - default: - XBT_INFO(" - (unknown kind %d)", task->kind); - } + if (flops_amount) { + flops_amount_ = static_cast(xbt_realloc(flops_amount_, sizeof(double) * host_count)); + memcpy(flops_amount_, flops_amount, sizeof(double) * host_count); + } else { + xbt_free(flops_amount_); + flops_amount_ = nullptr; } - XBT_INFO(" - amount: %.0f", SD_task_get_amount(task)); - if (task->kind == SD_TASK_COMP_PAR_AMDAHL) - XBT_INFO(" - alpha: %.2f", task->alpha); - XBT_INFO(" - Dependencies to satisfy: %zu", task->inputs->size()+ task->predecessors->size()); - if ((task->inputs->size()+ task->predecessors->size()) > 0) { - XBT_INFO(" - pre-dependencies:"); - for (auto it : *task->predecessors) - XBT_INFO(" %s", it->name); - - for (auto it: *task->inputs) - XBT_INFO(" %s", it->name); + unsigned long communication_nb = host_count * host_count; + if (bytes_amount) { + bytes_amount_ = static_cast(xbt_realloc(bytes_amount_, sizeof(double) * communication_nb)); + memcpy(bytes_amount_, bytes_amount, sizeof(double) * communication_nb); + } else { + xbt_free(bytes_amount_); + bytes_amount_ = nullptr; } - if ((task->outputs->size() + task->successors->size()) > 0) { - XBT_INFO(" - post-dependencies:"); - for (auto it : *task->successors) - XBT_INFO(" %s", it->name); - for (auto it : *task->outputs) - XBT_INFO(" %s", it->name); - } -} + for (const auto& h : hosts) + allocation_->push_back(h); -/** @brief Dumps the task in dotty formalism into the FILE* passed as second argument */ -void SD_task_dotty(SD_task_t task, void *out) -{ - FILE *fout = static_cast(out); - fprintf(fout, " T%p [label=\"%.20s\"", task, task->name); - switch (task->kind) { - case SD_TASK_COMM_E2E: - case SD_TASK_COMM_PAR_MXN_1D_BLOCK: - fprintf(fout, ", shape=box"); - break; - case SD_TASK_COMP_SEQ: - case SD_TASK_COMP_PAR_AMDAHL: - fprintf(fout, ", shape=circle"); - break; - default: - xbt_die("Unknown task type!"); - } - fprintf(fout, "];\n"); - for (auto it : *task->predecessors) - fprintf(fout, " T%p -> T%p;\n", it, task); - for (auto it : *task->inputs) - fprintf(fout, " T%p -> T%p;\n", it, task); + do_schedule(); } -/** - * \brief Adds a dependency between two tasks - * - * \a dst will depend on \a src, ie \a dst will not start before \a src is finished. - * Their \ref e_SD_task_state_t "state" must be #SD_NOT_SCHEDULED, #SD_SCHEDULED or #SD_RUNNABLE. - * - * \param name the name of the new dependency (can be \c nullptr) - * \param data the user data you want to associate with this dependency (can be \c nullptr) - * \param src the task which must be executed first - * \param dst the task you want to make depend on \a src - * \see SD_task_dependency_remove() - */ -void SD_task_dependency_add(const char *name, void *data, SD_task_t src, SD_task_t dst) +void Task::schedulev(const std::vector& hosts) { - if (src == dst) - THROWF(arg_error, 0, "Cannot add a dependency between task '%s' and itself", SD_task_get_name(src)); + xbt_assert(kind_ == SD_TASK_COMP_SEQ || kind_ == SD_TASK_COMP_PAR_AMDAHL, + "Task %s is not typed. Cannot automatically schedule it.", get_cname()); - if (src->state == SD_DONE || src->state == SD_FAILED) - THROWF(arg_error, 0, "Task '%s' must be SD_NOT_SCHEDULED, SD_SCHEDULABLE, SD_SCHEDULED, SD_RUNNABLE, or SD_RUNNING", - src->name); + for (unsigned long i = 0; i < hosts.size(); i++) + allocation_->push_back(hosts[i]); - if (dst->state == SD_DONE || dst->state == SD_FAILED || dst->state == SD_RUNNING) - THROWF(arg_error, 0, "Task '%s' must be SD_NOT_SCHEDULED, SD_SCHEDULABLE, SD_SCHEDULED, or SD_RUNNABLE", - dst->name); + XBT_VERB("Schedule computation task %s on %zu host(s)", get_cname(), allocation_->size()); - if (dst->inputs->find(src) != dst->inputs->end() || src->outputs->find(dst) != src->outputs->end() || - src->successors->find(dst) != src->successors->end() || dst->predecessors->find(src) != dst->predecessors->end()) - THROWF(arg_error, 0, "A dependency already exists between task '%s' and task '%s'", src->name, dst->name); + if (kind_ == SD_TASK_COMP_SEQ) { + if (not flops_amount_) { /*This task has failed and is rescheduled. Reset the flops_amount*/ + flops_amount_ = xbt_new0(double, 1); + flops_amount_[0] = amount_; + } + XBT_VERB("It costs %.f flops", flops_amount_[0]); + } - XBT_DEBUG("SD_task_dependency_add: src = %s, dst = %s", src->name, dst->name); + if (kind_ == SD_TASK_COMP_PAR_AMDAHL) { + distribute_comp_amdahl(hosts.size()); + XBT_VERB("%.f flops will be distributed following Amdahl's Law", flops_amount_[0]); + } - if (src->kind == SD_TASK_COMM_E2E || src->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK){ - if (dst->kind == SD_TASK_COMP_SEQ || dst->kind == SD_TASK_COMP_PAR_AMDAHL) - dst->inputs->insert(src); - else - dst->predecessors->insert(src); - src->successors->insert(dst); - } else { - if (dst->kind == SD_TASK_COMM_E2E|| dst->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK) - src->outputs->insert(dst); - else - src->successors->insert(dst); - dst->predecessors->insert(src); + do_schedule(); + + /* Iterate over all inputs and outputs to say where I am located (and start them if runnable) */ + for (auto const& input : get_inputs()) { + unsigned long src_nb = input->get_allocation_size(); + unsigned long dst_nb = hosts.size(); + if (src_nb == 0) + XBT_VERB("Sender side of '%s' not scheduled. Set receiver side to '%s''s allocation", input->get_cname(), + get_cname()); + input->set_sender_side_allocation(dst_nb, allocation_); + + if (input->get_allocation_size() > allocation_->size()) { + if (kind_ == SD_TASK_COMP_PAR_AMDAHL) + input->build_MxN_1D_block_matrix(src_nb, dst_nb); + + input->do_schedule(); + XBT_VERB("Auto-Schedule Communication task '%s'. Send %.f bytes from %lu hosts to %lu hosts.", input->get_cname(), + input->get_amount(), src_nb, dst_nb); + } } - /* if the task was runnable, the task goes back to SD_SCHEDULED because of the new dependency*/ - if (dst->state == SD_RUNNABLE) { - XBT_DEBUG("SD_task_dependency_add: %s was runnable and becomes scheduled!", dst->name); - SD_task_set_state(dst, SD_SCHEDULED); + for (auto const& output : get_outputs()) { + unsigned long src_nb = hosts.size(); + unsigned long dst_nb = output->get_allocation_size(); + if (dst_nb == 0) + XBT_VERB("Receiver side of '%s' not scheduled. Set sender side to '%s''s allocation", output->get_cname(), + get_cname()); + output->set_receiver_side_allocation(src_nb, allocation_); + + if (output->get_allocation_size() > allocation_->size()) { + if (kind_ == SD_TASK_COMP_PAR_AMDAHL) + output->build_MxN_1D_block_matrix(src_nb, dst_nb); + + output->do_schedule(); + XBT_VERB("Auto-Schedule Communication task %s. Send %.f bytes from %lu hosts to %lu hosts.", output->get_cname(), + output->get_amount(), src_nb, dst_nb); + } } } -/** - * \brief Indicates whether there is a dependency between two tasks. - * - * \param src a task - * \param dst a task depending on \a src - * - * If src is nullptr, checks whether dst has any pre-dependency. - * If dst is nullptr, checks whether src has any post-dependency. - */ -int SD_task_dependency_exists(SD_task_t src, SD_task_t dst) +void Task::unschedule() { - xbt_assert(src != nullptr || dst != nullptr, "Invalid parameter: both src and dst are nullptr"); + if (state_ == SD_NOT_SCHEDULED || state_ == SD_SCHEDULABLE) + throw std::invalid_argument(xbt::string_printf( + "Task %s: the state must be SD_SCHEDULED, SD_RUNNABLE, SD_RUNNING or SD_FAILED", get_cname())); - if (src) { - if (dst) { - return (src->successors->find(dst) != src->successors->end() || src->outputs->find(dst) != src->outputs->end()); - } else { - return src->successors->size() + src->outputs->size(); + if (state_ == SD_SCHEDULED || state_ == SD_RUNNABLE) /* if the task is scheduled or runnable */ { + allocation_->clear(); + if (kind_ == SD_TASK_COMP_PAR_AMDAHL || kind_ == SD_TASK_COMM_PAR_MXN_1D_BLOCK) { + /* Don't free scheduling data for typed tasks */ + xbt_free(flops_amount_); + xbt_free(bytes_amount_); + bytes_amount_ = nullptr; + flops_amount_ = nullptr; } - } else { - return dst->predecessors->size() + dst->inputs->size(); } - return 0; + + if (state_ == SD_RUNNING) + /* the task should become SD_FAILED */ + surf_action_->cancel(); + else { + if (has_unsolved_dependencies() == 0) + set_state(SD_SCHEDULABLE); + else + set_state(SD_NOT_SCHEDULED); + } + start_time_ = -1.0; } -/** - * \brief Remove a dependency between two tasks - * - * \param src a task - * \param dst a task depending on \a src - * \see SD_task_dependency_add() - */ -void SD_task_dependency_remove(SD_task_t src, SD_task_t dst) +void Task::run() { - XBT_DEBUG("SD_task_dependency_remove: src = %s, dst = %s", SD_task_get_name(src), SD_task_get_name(dst)); + xbt_assert(state_ == SD_RUNNABLE, "Task '%s' is not runnable! Task state: %d", get_cname(), (int)state_); + xbt_assert(not allocation_->empty(), "Task '%s': host_list is empty!", get_cname()); - if (src->successors->find(dst) == src->successors->end() && src->outputs->find(dst) == src->outputs->end()) - THROWF(arg_error, 0, "No dependency found between task '%s' and '%s': task '%s' is not a successor of task '%s'", - src->name, dst->name, dst->name, src->name); + XBT_VERB("Executing task '%s'", get_cname()); - if (src->kind == SD_TASK_COMM_E2E || src->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK){ - if (dst->kind == SD_TASK_COMP_SEQ || dst->kind == SD_TASK_COMP_PAR_AMDAHL) - dst->inputs->erase(src); - else - dst->predecessors->erase(src); - src->successors->erase(dst); - } else { - if (dst->kind == SD_TASK_COMM_E2E|| dst->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK) - src->outputs->erase(dst); - else - src->successors->erase(dst); - dst->predecessors->erase(src); + /* Beware! The scheduling data are now used by the surf action directly! no copy was done */ + auto host_model = allocation_->front()->get_netpoint()->get_englobing_zone()->get_host_model(); + surf_action_ = host_model->execute_parallel(*allocation_, flops_amount_, bytes_amount_, rate_); + + surf_action_->set_data(this); + + XBT_DEBUG("surf_action = %p", surf_action_); + + set_state(SD_RUNNING); + sd_global->return_set.insert(this); +} + +void Task::destroy() +{ + XBT_DEBUG("Destroying task %s...", get_cname()); + + /* First Remove all dependencies associated with the task. */ + while (not dependencies_.empty()) + (*(dependencies_.begin()))->dependency_remove(this); + while (not successors_.empty()) + this->dependency_remove(successors_.front()); + + if (state_ == SD_SCHEDULED || state_ == SD_RUNNABLE) { + xbt_free(flops_amount_); + xbt_free(bytes_amount_); + bytes_amount_ = nullptr; + flops_amount_ = nullptr; } - /* if the task was scheduled and dependencies are satisfied, we can make it runnable */ - if (dst->predecessors->empty() && dst->inputs->empty() && dst->state == SD_SCHEDULED) - SD_task_set_state(dst, SD_RUNNABLE); + xbt_free(flops_amount_); + xbt_free(bytes_amount_); + + delete allocation_; + + if (surf_action_ != nullptr) + surf_action_->unref(); + + XBT_DEBUG("Task destroyed."); + delete this; } +} // namespace sd +} // namespace simgrid + +/* **************************** Public C interface *************************** */ /** - * \brief Adds a watch point to a task + * @brief Creates a new task. * - * SD_simulate() will stop as soon as the \ref e_SD_task_state_t "state" of this task becomes the one given in argument. - * The watch point is then automatically removed. - * - * \param task a task - * \param state the \ref e_SD_task_state_t "state" you want to watch (cannot be #SD_NOT_SCHEDULED) - * \see SD_task_unwatch() + * @param name the name of the task (can be @c nullptr) + * @param data the user data you want to associate with the task (can be @c nullptr) + * @param amount amount of the task + * @return the new task + * @see SD_task_destroy() */ -void SD_task_watch(SD_task_t task, e_SD_task_state_t state) +SD_task_t SD_task_create(const char* name, void* data, double amount) { - if (state & SD_NOT_SCHEDULED) - THROWF(arg_error, 0, "Cannot add a watch point for state SD_NOT_SCHEDULED"); - - task->watch_points = task->watch_points | state; + return simgrid::sd::Task::create(name, amount, data); } -/** - * \brief Removes a watch point from a task +/** @brief create an end-to-end communication task that can then be auto-scheduled * - * \param task a task - * \param state the \ref e_SD_task_state_t "state" you no longer want to watch - * \see SD_task_watch() + * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows one to specify the task costs at + * creation, and decouple them from the scheduling process where you just specify which resource should deliver the + * mandatory power. + * + * A end-to-end communication must be scheduled on 2 hosts, and the amount specified at creation is sent from hosts[0] + * to hosts[1]. */ -void SD_task_unwatch(SD_task_t task, e_SD_task_state_t state) +SD_task_t SD_task_create_comm_e2e(const char* name, void* data, double amount) { - xbt_assert(state != SD_NOT_SCHEDULED, "SimDag error: Cannot have a watch point for state SD_NOT_SCHEDULED"); - task->watch_points = task->watch_points & ~state; + return simgrid::sd::Task::create_comm_e2e(name, amount, data); } -/** - * \brief Returns an approximative estimation of the execution time of a task. +/** @brief create a sequential computation task that can then be auto-scheduled * - * The estimation is very approximative because the value returned is the time the task would take if it was executed - * now and if it was the only task. + * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows one to specify the task costs at + * creation, and decouple them from the scheduling process where you just specify which resource should deliver the + * mandatory power. + * + * A sequential computation must be scheduled on 1 host, and the amount specified at creation to be run on hosts[0]. * - * \param task the task to evaluate - * \param host_count number of hosts on which the task would be executed - * \param host_list the hosts on which the task would be executed - * \param flops_amount computation amount for each host(i.e., an array of host_count doubles) - * \param bytes_amount communication amount between each pair of hosts (i.e., a matrix of host_count*host_count doubles) - * \see SD_schedule() + * @param name the name of the task (can be @c nullptr) + * @param data the user data you want to associate with the task (can be @c nullptr) + * @param flops_amount amount of compute work to be done by the task + * @return the new SD_TASK_COMP_SEQ typed task */ -double SD_task_get_execution_time(SD_task_t task, int host_count, const sg_host_t *host_list, - const double *flops_amount, const double *bytes_amount) +SD_task_t SD_task_create_comp_seq(const char* name, void* data, double flops_amount) { - xbt_assert(host_count > 0, "Invalid parameter"); - double max_time = 0.0; - - /* the task execution time is the maximum execution time of the parallel tasks */ - for (int i = 0; i < host_count; i++) { - double time = 0.0; - if (flops_amount != nullptr) - time = flops_amount[i] / host_list[i]->getSpeed(); - - if (bytes_amount != nullptr) - for (int j = 0; j < host_count; j++) - if (bytes_amount[i * host_count + j] != 0) - time += (sg_host_route_latency(host_list[i], host_list[j]) + - bytes_amount[i * host_count + j] / sg_host_route_bandwidth(host_list[i], host_list[j])); - - if (time > max_time) - max_time = time; - } - return max_time; + return simgrid::sd::Task::create_comp_seq(name, flops_amount, data); } -static inline void SD_task_do_schedule(SD_task_t task) +/** @brief create a parallel computation task that can then be auto-scheduled + * + * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows one to specify the task costs at + * creation, and decouple them from the scheduling process where you just specify which resource should deliver the + * mandatory power. + * + * A parallel computation can be scheduled on any number of host. + * The underlying speedup model is Amdahl's law. + * To be auto-scheduled, @see SD_task_distribute_comp_amdahl has to be called first. + * @param name the name of the task (can be @c nullptr) + * @param data the user data you want to associate with the task (can be @c nullptr) + * @param flops_amount amount of compute work to be done by the task + * @param alpha purely serial fraction of the work to be done (in [0.;1.[) + * @return the new task + */ +SD_task_t SD_task_create_comp_par_amdahl(const char* name, void* data, double flops_amount, double alpha) { - if (SD_task_get_state(task) > SD_SCHEDULABLE) - THROWF(arg_error, 0, "Task '%s' has already been scheduled", SD_task_get_name(task)); + return simgrid::sd::Task::create_comp_par_amdahl(name, flops_amount, data, alpha); +} - if (task->predecessors->empty() && task->inputs->empty()) - SD_task_set_state(task, SD_RUNNABLE); - else - SD_task_set_state(task, SD_SCHEDULED); +/** @brief create a complex data redistribution task that can then be auto-scheduled + * + * Auto-scheduling mean that the task can be used with SD_task_schedulev(). + * This allows one to specify the task costs at creation, and decouple them from the scheduling process where you just + * specify which resource should communicate. + * + * A data redistribution can be scheduled on any number of host. + * The assumed distribution is a 1D block distribution. Each host owns the same share of the @see amount. + * To be auto-scheduled, @see SD_task_distribute_comm_mxn_1d_block has to be called first. + * @param name the name of the task (can be @c nullptr) + * @param data the user data you want to associate with the task (can be @c nullptr) + * @param amount amount of data to redistribute by the task + * @return the new task + */ +SD_task_t SD_task_create_comm_par_mxn_1d_block(const char* name, void* data, double amount) +{ + return simgrid::sd::Task::create_comm_par_mxn_1d_block(name, amount, data); } /** - * \brief Schedules a task + * @brief Destroys a task. * - * The task state must be #SD_NOT_SCHEDULED. - * Once scheduled, a task is executed as soon as possible in \see SD_simulate, i.e. when its dependencies are satisfied. + * The user data (if any) should have been destroyed first. * - * \param task the task you want to schedule - * \param host_count number of hosts on which the task will be executed - * \param host_list the hosts on which the task will be executed - * \param flops_amount computation amount for each hosts (i.e., an array of host_count doubles) - * \param bytes_amount communication amount between each pair of hosts (i.e., a matrix of host_count*host_count doubles) - * \param rate task execution speed rate - * \see SD_task_unschedule() + * @param task the task you want to destroy + * @see SD_task_create() */ -void SD_task_schedule(SD_task_t task, int host_count, const sg_host_t * host_list, - const double *flops_amount, const double *bytes_amount, double rate) +void SD_task_destroy(SD_task_t task) { - xbt_assert(host_count > 0, "host_count must be positive"); - - task->rate = rate; - - if (flops_amount) { - task->flops_amount = static_cast(xbt_realloc(task->flops_amount, sizeof(double) * host_count)); - memcpy(task->flops_amount, flops_amount, sizeof(double) * host_count); - } else { - xbt_free(task->flops_amount); - task->flops_amount = nullptr; - } + task->destroy(); +} - int communication_nb = host_count * host_count; - if (bytes_amount) { - task->bytes_amount = static_cast(xbt_realloc(task->bytes_amount, sizeof(double) * communication_nb)); - memcpy(task->bytes_amount, bytes_amount, sizeof(double) * communication_nb); - } else { - xbt_free(task->bytes_amount); - task->bytes_amount = nullptr; - } +/** @brief Returns the user data of a task */ +void* SD_task_get_data(const_SD_task_t task) +{ + return task->get_data(); +} - for(int i =0; iallocation->push_back(host_list[i]); +/** @brief Sets the user data of a task + * The new data can be @c nullptr. The old data should have been freed first, if it was not @c nullptr. + */ +void SD_task_set_data(SD_task_t task, void* data) +{ + task->set_data(data); +} - SD_task_do_schedule(task); +void SD_task_set_rate(SD_task_t task, double rate) +{ + task->set_rate(rate); } /** - * \brief Unschedules a task - * - * The task state must be #SD_SCHEDULED, #SD_RUNNABLE, #SD_RUNNING or #SD_FAILED. - * If you call this function, the task state becomes #SD_NOT_SCHEDULED. - * Call SD_task_schedule() to schedule it again. + * @brief Returns the state of a task * - * \param task the task you want to unschedule - * \see SD_task_schedule() + * @param task a task + * @return the current @ref e_SD_task_state_t "state" of this task: + * #SD_NOT_SCHEDULED, #SD_SCHEDULED, #SD_RUNNABLE, #SD_RUNNING, #SD_DONE or #SD_FAILED + * @see e_SD_task_state_t */ -void SD_task_unschedule(SD_task_t task) +e_SD_task_state_t SD_task_get_state(const_SD_task_t task) { - if (task->state == SD_NOT_SCHEDULED || task->state == SD_SCHEDULABLE) - THROWF(arg_error, 0, "Task %s: the state must be SD_SCHEDULED, SD_RUNNABLE, SD_RUNNING or SD_FAILED", task->name); + return task->get_state(); +} - if ((task->state == SD_SCHEDULED || task->state == SD_RUNNABLE) /* if the task is scheduled or runnable */ - && ((task->kind == SD_TASK_COMP_PAR_AMDAHL) || (task->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK))) { - /* Don't free scheduling data for typed tasks */ - __SD_task_destroy_scheduling_data(task); - task->allocation->clear(); - } +const char* SD_task_get_name(const_SD_task_t task) +{ + return task->get_cname(); +} - if (SD_task_get_state(task) == SD_RUNNING) - /* the task should become SD_FAILED */ - task->surf_action->cancel(); - else { - if (task->predecessors->empty() && task->inputs->empty()) - SD_task_set_state(task, SD_SCHEDULABLE); - else - SD_task_set_state(task, SD_NOT_SCHEDULED); - } - task->start_time = -1.0; +void SD_task_set_name(SD_task_t task, const char* name) +{ + task->set_name(name); } -/* Runs a task. */ -void SD_task_run(SD_task_t task) +/** @brief Returns the parents of a task ina dynar */ +xbt_dynar_t SD_task_get_parents(const_SD_task_t task) { - xbt_assert(task->state == SD_RUNNABLE, "Task '%s' is not runnable! Task state: %d", task->name, (int) task->state); - xbt_assert(task->allocation != nullptr, "Task '%s': host_list is nullptr!", task->name); + xbt_dynar_t parents = xbt_dynar_new(sizeof(SD_task_t), nullptr); - XBT_VERB("Executing task '%s'", task->name); + for (auto const& it : task->get_dependencies()) + xbt_dynar_push(parents, &it); - /* Copy the elements of the task into the action */ - int host_nb = task->allocation->size(); - sg_host_t *hosts = xbt_new(sg_host_t, host_nb); - int i =0; - for (auto host: *task->allocation){ - hosts[i] = host; - i++; - } + return parents; +} - double *flops_amount = xbt_new0(double, host_nb); - double *bytes_amount = xbt_new0(double, host_nb * host_nb); +/** @brief Returns the children of a task in a dynar */ +xbt_dynar_t SD_task_get_children(const_SD_task_t task) +{ + xbt_dynar_t children = xbt_dynar_new(sizeof(SD_task_t), nullptr); - if(task->flops_amount) - memcpy(flops_amount, task->flops_amount, sizeof(double) * host_nb); - if(task->bytes_amount) - memcpy(bytes_amount, task->bytes_amount, sizeof(double) * host_nb * host_nb); + for (auto const& it : task->get_successors()) + xbt_dynar_push(children, &it); - task->surf_action = surf_host_model->executeParallelTask(host_nb, hosts, flops_amount, bytes_amount, task->rate); + return children; +} + +double SD_task_get_start_time(const_SD_task_t task) +{ + return task->get_start_time(); +} - task->surf_action->setData(task); +double SD_task_get_finish_time(const_SD_task_t task) +{ + return task->get_finish_time(); +} - XBT_DEBUG("surf_action = %p", task->surf_action); +void SD_task_distribute_comp_amdahl(SD_task_t task, int count) +{ + task->distribute_comp_amdahl(count); +} - __SD_task_destroy_scheduling_data(task); /* now the scheduling data are not useful anymore */ - SD_task_set_state(task, SD_RUNNING); - sd_global->return_set->insert(task); +void SD_task_build_MxN_1D_block_matrix(SD_task_t task, int src_nb, int dst_nb) +{ + task->build_MxN_1D_block_matrix(src_nb, dst_nb); } /** - * \brief Returns the start time of a task - * - * The task state must be SD_RUNNING, SD_DONE or SD_FAILED. + * @brief Returns the number of workstations involved in a task * - * \param task: a task - * \return the start time of this task + * Only call this on already scheduled tasks! + * @param task a task */ -double SD_task_get_start_time(SD_task_t task) +int SD_task_get_workstation_count(const_SD_task_t task) { - if (task->surf_action) - return task->surf_action->getStartTime(); - else - return task->start_time; + return static_cast(task->get_allocation_size()); } /** - * \brief Returns the finish time of a task + * @brief Returns the list of workstations involved in a task * - * The task state must be SD_RUNNING, SD_DONE or SD_FAILED. - * If the state is not completed yet, the returned value is an estimation of the task finish time. This value can - * vary until the task is completed. + * Only call this on already scheduled tasks! + * @param task a task + */ +sg_host_t* SD_task_get_workstation_list(const_SD_task_t task) +{ + return task->get_allocation()->data(); +} + +/** + * @brief Returns the total amount of work contained in a task * - * \param task: a task - * \return the start time of this task + * @param task a task + * @return the total amount of work (computation or data transfer) for this task + * @see SD_task_get_remaining_amount() + */ +double SD_task_get_amount(const_SD_task_t task) +{ + return task->get_amount(); +} + +void SD_task_set_amount(SD_task_t task, double amount) +{ + task->set_amount(amount); +} + +double SD_task_get_remaining_amount(const_SD_task_t task) +{ + return task->get_remaining_amount(); +} + +e_SD_task_kind_t SD_task_get_kind(const_SD_task_t task) +{ + return task->get_kind(); +} + +void SD_task_dump(const_SD_task_t task) +{ + task->dump(); +} + +void SD_task_dependency_add(SD_task_t src, SD_task_t dst) +{ + XBT_DEBUG("SD_task_dependency_add: src = %s, dst = %s", src->get_cname(), dst->get_cname()); + src->dependency_add(dst); +} +void SD_task_dependency_remove(SD_task_t src, SD_task_t dst) +{ + XBT_DEBUG("SD_task_dependency_remove: src = %s, dst = %s", src->get_cname(), dst->get_cname()); + src->dependency_remove(dst); +} + +/** + * @brief Indicates whether there is a dependency between two tasks. + * If src is nullptr, checks whether dst has any pre-dependency. + * If dst is nullptr, checks whether src has any post-dependency. */ -double SD_task_get_finish_time(SD_task_t task) +int SD_task_dependency_exists(const_SD_task_t src, SD_task_t dst) { - if (task->surf_action) /* should never happen as actions are destroyed right after their completion */ - return task->surf_action->getFinishTime(); + xbt_assert(src != nullptr || dst != nullptr, "Invalid parameter: both src and dst are nullptr"); + + if (src) + if (dst) + return src->dependency_exist(dst); + else + return static_cast(src->is_waited_by()); else - return task->finish_time; + return static_cast(dst->has_unsolved_dependencies()); } -void SD_task_distribute_comp_amdahl(SD_task_t task, int count) +void SD_task_watch(SD_task_t task, e_SD_task_state_t state) { - xbt_assert(task->kind == SD_TASK_COMP_PAR_AMDAHL, "Task %s is not a SD_TASK_COMP_PAR_AMDAHL typed task." - "Cannot use this function.", task->name); - task->flops_amount = xbt_new0(double, count); - task->bytes_amount = xbt_new0(double, count * count); + task->watch(state); +} - for (int i=0; iflops_amount[i] = (task->alpha + (1 - task->alpha)/count) * task->amount; - } +void SD_task_unwatch(SD_task_t task, e_SD_task_state_t state) +{ + task->unwatch(state); } -void SD_task_build_MxN_1D_block_matrix(SD_task_t task, int src_nb, int dst_nb){ - xbt_assert(task->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK, "Task %s is not a SD_TASK_COMM_PAR_MXN_1D_BLOCK typed task." - "Cannot use this function.", task->name); - xbt_free(task->bytes_amount); - task->bytes_amount = xbt_new0(double,task->allocation->size() * task->allocation->size()); - - for (int i=0; iamount/src_nb; - double src_end = src_start + task->amount/src_nb; - for (int j=0; jamount/dst_nb; - double dst_end = dst_start + task->amount/dst_nb; - XBT_VERB("(%d->%d): (%.2f, %.2f)-> (%.2f, %.2f)", i, j, src_start, src_end, dst_start, dst_end); - task->bytes_amount[i*(src_nb+dst_nb)+src_nb+j]=0.0; - if ((src_end > dst_start) && (dst_end > src_start)) { /* There is something to send */ - task->bytes_amount[i*(src_nb+dst_nb)+src_nb+j] = MIN(src_end, dst_end)- MAX(src_start, dst_start); - XBT_VERB("==> %.2f", task->bytes_amount[i*(src_nb+dst_nb)+src_nb+j]); - } - } +/** @brief Dumps the task in dotty formalism into the FILE* passed as second argument */ +void SD_task_dotty(const_SD_task_t task, void* out) +{ + auto* fout = static_cast(out); + fprintf(fout, " T%p [label=\"%.20s\"", task, task->get_cname()); + switch (task->get_kind()) { + case SD_TASK_COMM_E2E: + case SD_TASK_COMM_PAR_MXN_1D_BLOCK: + fprintf(fout, ", shape=box"); + break; + case SD_TASK_COMP_SEQ: + case SD_TASK_COMP_PAR_AMDAHL: + fprintf(fout, ", shape=circle"); + break; + default: + xbt_die("Unknown task type!"); } + fprintf(fout, "];\n"); + for (auto const& it : task->get_dependencies()) + fprintf(fout, " T%p -> T%p;\n", it, task); } -/** @brief Auto-schedules a task. +/** + * @brief Returns an approximative estimation of the execution time of a task. * - * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows to specify the task costs at - * creation, and decouple them from the scheduling process where you just specify which resource should deliver the - * mandatory power. + * The estimation is very approximative because the value returned is the time the task would take if it was executed + * now and if it was the only task. * - * To be auto-schedulable, a task must be a typed computation SD_TASK_COMP_SEQ or SD_TASK_COMP_PAR_AMDAHL. + * @param host_count number of hosts on which the task would be executed + * @param host_list the hosts on which the task would be executed + * @param flops_amount computation amount for each host(i.e., an array of host_count doubles) + * @param bytes_amount communication amount between each pair of hosts (i.e., a matrix of host_count*host_count doubles) + * @see SD_schedule() */ -void SD_task_schedulev(SD_task_t task, int count, const sg_host_t * list) +double SD_task_get_execution_time(const_SD_task_t /*task*/, int host_count, const sg_host_t* host_list, + const double* flops_amount, const double* bytes_amount) { - xbt_assert(task->kind == SD_TASK_COMP_SEQ || task->kind == SD_TASK_COMP_PAR_AMDAHL, - "Task %s is not typed. Cannot automatically schedule it.", SD_task_get_name(task)); - - for(int i =0; iallocation->push_back(list[i]); + xbt_assert(host_count > 0, "Invalid parameter"); + double max_time = 0.0; - XBT_VERB("Schedule computation task %s on %zu host(s)", task->name, task->allocation->size()); + /* the task execution time is the maximum execution time of the parallel tasks */ + for (int i = 0; i < host_count; i++) { + double time = 0.0; + if (flops_amount != nullptr) + time = flops_amount[i] / host_list[i]->get_speed(); - if (task->kind == SD_TASK_COMP_SEQ) { - if (not task->flops_amount) { /*This task has failed and is rescheduled. Reset the flops_amount*/ - task->flops_amount = xbt_new0(double, 1); - task->flops_amount[0] = task->amount; - } - XBT_VERB("It costs %.f flops", task->flops_amount[0]); - } + if (bytes_amount != nullptr) + for (int j = 0; j < host_count; j++) + if (bytes_amount[i * host_count + j] != 0) + time += (sg_host_get_route_latency(host_list[i], host_list[j]) + + bytes_amount[i * host_count + j] / sg_host_get_route_bandwidth(host_list[i], host_list[j])); - if (task->kind == SD_TASK_COMP_PAR_AMDAHL) { - SD_task_distribute_comp_amdahl(task, count); - XBT_VERB("%.f flops will be distributed following Amdahl's Law", task->flops_amount[0]); + if (time > max_time) + max_time = time; } + return max_time; +} - SD_task_do_schedule(task); - - /* Iterate over all inputs and outputs to say where I am located (and start them if runnable) */ - for (auto input : *task->inputs){ - int src_nb = input->allocation->size(); - int dst_nb = count; - if (input->allocation->empty()) - XBT_VERB("Sender side of '%s' not scheduled. Set receiver side to '%s''s allocation", input->name, task->name); - - for (int i=0; iallocation->push_back(task->allocation->at(i)); - - if (input->allocation->size () > task->allocation->size()) { - if (task->kind == SD_TASK_COMP_PAR_AMDAHL) - SD_task_build_MxN_1D_block_matrix(input, src_nb, dst_nb); - - SD_task_do_schedule(input); - XBT_VERB ("Auto-Schedule Communication task '%s'. Send %.f bytes from %d hosts to %d hosts.", - input->name,input->amount, src_nb, dst_nb); - } - } +/** + * @brief Schedules a task + * + * The task state must be #SD_NOT_SCHEDULED. + * Once scheduled, a task is executed as soon as possible in @see SD_simulate, i.e. when its dependencies are satisfied. + * + * @param task the task you want to schedule + * @param host_count number of hosts on which the task will be executed + * @param host_list the hosts on which the task will be executed + * @param flops_amount computation amount for each hosts (i.e., an array of host_count doubles) + * @param bytes_amount communication amount between each pair of hosts (i.e., a matrix of host_count*host_count doubles) + * @param rate task execution speed rate + * @see SD_task_unschedule() + */ +void SD_task_schedule(SD_task_t task, int host_count, const sg_host_t* host_list, const double* flops_amount, + const double* bytes_amount, double rate) +{ + xbt_assert(host_count > 0, "host_count must be positive"); + std::vector hosts(host_count); - for (auto output : *task->outputs){ - int src_nb = count; - int dst_nb = output->allocation->size(); - if (output->allocation->empty()) - XBT_VERB("Receiver side of '%s' not scheduled. Set sender side to '%s''s allocation", output->name, task->name); + for (int i = 0; i < host_count; i++) + hosts[i] = host_list[i]; - for (int i=0; iallocation->insert(output->allocation->begin()+i, task->allocation->at(i)); + task->schedule(hosts, flops_amount, bytes_amount, rate); +} - if (output->allocation->size () > task->allocation->size()) { - if (task->kind == SD_TASK_COMP_PAR_AMDAHL) - SD_task_build_MxN_1D_block_matrix(output, src_nb, dst_nb); +void SD_task_unschedule(SD_task_t task) +{ + task->unschedule(); +} - SD_task_do_schedule(output); - XBT_VERB ("Auto-Schedule Communication task %s. Send %.f bytes from %d hosts to %d hosts.", - output->name, output->amount, src_nb, dst_nb); - } - } +/** @brief Auto-schedules a task. + * + * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows one to specify the task costs at + * creation, and decouple them from the scheduling process where you just specify which resource should deliver the + * mandatory power. + * + * To be auto-schedulable, a task must be a typed computation SD_TASK_COMP_SEQ or SD_TASK_COMP_PAR_AMDAHL. + */ +void SD_task_schedulev(SD_task_t task, int count, const sg_host_t* host_list) +{ + std::vector list(count); + for (int i = 0; i < count; i++) + list[i] = host_list[i]; + task->schedulev(list); } /** @brief autoschedule a task on a list of hosts @@ -973,12 +957,11 @@ void SD_task_schedulev(SD_task_t task, int count, const sg_host_t * list) void SD_task_schedulel(SD_task_t task, int count, ...) { va_list ap; - sg_host_t *list = xbt_new(sg_host_t, count); + std::vector list(count); va_start(ap, count); - for (int i=0; ischedulev(list); }