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CURRICULUM VITÆ
AND OVERVIEW OF ACTIVITIES

This Habilitation manuscript focuses on research works done in the field of neural net-
works and more particularly on the use of different kinds of architectures to solve prob-
lems. However, I have also addressed problems taking place in other domains such as
wireless sensor networks. Therefore, to show that I have acquired a very different set
of skills in different fields of study, to start this chapter gives a brief curriculum vitæ and
overwiew of the activities completed since I became an assistant professor in computer
science at the University of Franche-Comté. A chronological presentation of the differ-
ent research works, past and present, is made, describing the covered topics and the
resulting publications which are grouped by publication types at the end.

CURRICULUM VITÆ

• Academic position

– September 2002 - date → Assistant Professor in Computer Science at Uni-
versity Institute of Technology of Belfort-Montbéliard (IUT Belfort-Montbéliard),
part of the University of Franche-Comté.

• Past-academic positions

– 2001 - 2002→ Full-time Temporary Teaching and Research Assistant (ATER)
at Louis Pasteur University of Strasbourg.

– 2000 - 2001→ Half-time Temporary Teaching and Research Assistant (ATER)
at Louis Pasteur University of Strasbourg.

• Education

– 2001→ PhD in Computer Science at Louis Pasteur University of Strasbourg.
– 1996 → MSc in Computer Science (Diplôme d’Études Approfondies - 5 year

program) at Louis Pasteur University of Strasbourg.

EXTERNAL LINKS

• Personal professional website

• Google Scholar

• ResearchGate
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INSTITUTIONAL ACTIVITY

• September 2011 - August 2014 → Head of the Computer Science Department at
University Institute of Technology of Belfort-Montbéliard (IUT Belfort-Montbéliard).

• Since 2008 → Elected member of the Department Council (Conseil de Départe-
ment), as teacher representative, during each academic year.

RESEARCH ACTIVITY

My research activities have entirely been carried out as a member of the AND team (Algo-
rithmique Numérique Distribuée), a part of the DISC department (Département Informa-
tique des Systèmes Complexes) which is the Computer Science department of FEMTO-
ST Institute. Over the past 15 years I have worked on various topics, going back and forth
between some of them:

• I begun to work on discrete dynamical systems and high performance computing;

• Then I investigated the use of optimization methods, first to improve the lifetime of
Wireless Sensor Networks (WSNs) and second to predict the evolution of genomes
in bioinformatics;

• Finally, I studied the use of artificial neural networks to solve different prediction and
classification tasks. From 2008 up to 2012, the considered network architecture
was the multilayer perceptron, while since 2015 I am interested in deep learning
ones and Reservoir Computing.

More details on the different research works, presented in their chronological order, are
given thereafter. When a work has been completed during a PhD thesis, or a Master of
Science internship, I precise it as well as any resulting publication.

1/ 2002 - 2005 / DISCRETE DYNAMICAL SYSTEMS AND HIGH PERFORMANCE COMPUTING

I studied from a theoretical point of view the asynchronous mode of discrete-state
discrete-time dynamic networks. The asynchronous mode allows to obtain smaller global
computation time on clusters that communicate together through dynamic links, typically
distant, but it can lead to unstable behaviors due to cycles in the connection graph. The
main result, issued from the internship of a Master Science student is the proposal, pub-
lished in [C19], of a new class of discrete dynamic networks mixing synchronism and
asynchronism.

In the high performance computing topic, I took part in the development of parallel syn-
chronous and asynchronous Newton multisplitting algorithms, in order to efficiently solve
a 3D transport model using geographically distributed computers. In fact, thanks to the
multisplitting method and overlapping techniques, the number of iterations may be re-
duced and consequently lead to reduced computation times. Algorithms were imple-
mented with a grid enabled Java Asynchronous Computing Environment and evaluated
on a heterogeneous grid environment. [IJ18] and [C20] are the resulting publications.
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The first year of this period of time I also completed two publications presenting the main
contributions of my PhD thesis. In this dissertation, I addressed the parallelization of
several metaheuristics for combinatorial optimization in the context of medical image reg-
istration, showing the suitability of the data parallel programming paradigm. First, for
the rigid matching in chapter book [B2] is showed that a data parallel implementation of
differential evolution can yield subvoxel accuracy and exhibit an almost linear speedup.
Second, for the deformable matching in [IJ19] is described a massively parallel approach
via stochastic differential equations giving computation times compatible with a clinical
use. In both cases the addressed problem was 3D Magnetic Resonance Image (MRI)
monomodal registration.

2/ 2003 - 2007 / FIRST WORK ON WIRELESS SENSOR NETWORKS

During these years, I co-supervised with Jacques M. Bahi a PhD thesis about the applica-
tion of concepts of asynchronous computing framework to WSNs. An approach allowing
to improve the lifetime of heterogeneous WSNs and Mobile Ad hoc NETworks (MANETs)
by distributing the computing tasks according to the remaining energy in the different
nodes has been proposed and evaluated using the discrete-event simulator OMNeT++.
The background idea was to formulate the problem as an energy-controlled load balanc-
ing problem so that each node would cooperate in proportion to its remaining energy.
Three publications are issued from this work [IJ17, C17, C18].

3/ 2008 - 2012 / SOLVING PROBLEMS WITH MULTILAYER PERCEPTRONS

In 2008 I chose to focus my research activity on the multilayer perceptron to extend a col-
laboration with the IRMA (Informatics and Radiation physics Medical Applications) team
from the Chrono-Environnement laboratory of the University of Franche-Comté. This
team works more particularly on dosimetry [NJ2, C13], radiophysics, with external radi-
ation therapy as case study. The latter is the most common type of radiation therapy (or
radiotherapy) used for cancer treatment. As a result, I co-supervised a PhD thesis on the
use of the multilayer perceptron to predict lung respiratory motion. Indeed, being able
to manage respiratory motion is very important in lung cancer radiotherapy. Numerous
publications [IJ5, IJ9, IJ10, IJ13, IJ14, IJ15, NJ1, C16] and a software patent [S1] assess
the high quality of this work. Furthermore, other publications [IJ7, IJ16] dealing with the
use of a neural network for case-based reasoning and another patent [S2] are directly
linked to it. Considering still this medical physics context, I have investigated in [B1, C15,
C16] different approaches to improve the building and training of a multilayer perceptron.

During the last year of the PhD thesis and after its defense in october 2011, other kinds
of prediction problems have received my attention. The construction and evaluation of
chaotic networks, just as the prediction of chaos with multilayer networks, were the sub-
ject of research works published in [IJ12, C14]. A case study was protein folding in the
2D model that has been shown to be chaotic in [IJ11]. In [IJ8, C12], I examined with
other colleagues whether a neural network is a relevant solution for active Micro-Electro-
Mechanical Systems (MEMS) based aerodynamic flow control, and more precisely if a
multilayer perceptron is able to predict the evolution of the force acting on a backward-
facing step (a rough model of the rear of a car) due to the MEMS effect on the turbulent
airflow over the step.
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4/ 2012 - 2015 / SECOND WORK ON WIRELESS SENSOR NETWORKS AND BIOINFORMATICS

In late 2012 I worked once again on wireless sensor networks and began an activity in
bioinformatics due to my involvement in two PhD thesis as co-supervisor.

The first one dealt with the design of distributed coverage optimization techniques for
improving lifetime of wireless sensor networks. Different distributed protocols based on
a partitioning of the area of interest to be monitored in sub-regions have been thus pro-
posed [IJ1, IJ4, IJ6, C11]. The main idea in each of these protocols was to periodically
elect in a sub-region a leader node that is in charge of computing disjoint cover sets for
one or several monitoring rounds, where the cover sets are obtained by solving an integer
programming problem. From a global area of interest point of view, the different protocols
are distributed, but locally in each sub-region they are centralized. As in the previous
works on WSNs, the performance of each protocol is assessed with the simulator OM-
NeT++, using the GLPK solver to find a solution to the optimization problem.

The second thesis faced the problem of the reconstruction of ancestral DNA sequences,
using as case study 450 chloroplast genomes. These organelles are nucleotide chains
of intermediate size that have undergone very little recombination over time. To solve
this problem, a pipeline of methods allowing to obtain a well-supported phylogenetic tree,
in accordance with the largest number of genes, from a set of unannotated genomes
has been proposed. These methods combined tools from high performance computing,
nature-inspired optimization, and bio-statistics. For the phylogenetic prediction stage that
tries to build the most supported tree from a set of core genomes, genetic algorithm
and particle swarm optimization were applied. The large number of papers presented in
international conferences, directly issued from this thesis [C4, C6, C7, C8, C9, C10], or
from ongoing research works [IJ2, C2, C3] in which I have a minor activity, shows the
relevance of the proposal.

5/ SINCE 2015 / RESERVOIR COMPUTING AND DEEP LEARNING

A couple of years ago I had a renewed interest in neural network architectures, mainly for
two reasons. The first one is a novel brain-inspired computing concept called Reservoir
Computing, which has recently been explored experimentally through time delayed feed-
back nonlinear dynamics by colleagues of the OPTO team from FEMTO-ST Institute’s
OPTICS department. Indeed, first experiments showed that such a hardware implemen-
tation was able to recognize simple speech (spoken digits) at the rate of 1 million words
per second. Therefore, I decided to study the Reservoir Computing paradigm, focusing
on its representative in machine learning: the Echo State Network model. The second
reason is the rise of deep learning over the past few years, with an increasing number of
architectures exhibiting impressive performances on various classification and prediction
problems. More specifically, I have investigated architectures in order to solve problems
already studied in the AND team, namely image steganalysis in spatial domain and more
recently image denoising.

The research work on Reservoir Computing started at the beginning of 2015 thanks to two
Master internships. The first student has thus developed a multicore version of a Matlab
program (designed by Pr. Laurent Larger, a colleague of the OPTO team) simulating an
electro-optical hardware implementation of Reservoir Computing in order to reduce the
computation time, while the second studied the detection performance of Echo State Net-
works on a well-known image recognition problem: the MNIST handwriting benchmark.
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The results obtained at the end of these internships have been presented, respectively,
in the Workshop Dynamical Systems and Brain-inspired Information Processing orga-
nized by the Laboratory of Mathematics of Besançon in November 2015 [O5] and at an
international conference in august 2016 [C5].

Today, deep learning is known to be the provider of state-of-the-art solutions for many
image problems and, among the available architectures, convolutional neural networks
usually represent the best choice for image classification. Therefore, as image steganal-
ysis is such a problem, since we want to distinguish images embedding a hidden mes-
sage from innocent ones, considering embedding schemes working in spatial domain,
the objective was to find an approach allowing to obtain better detection performance
than the currently available conventional Spatial Rich Models (SRM)+Ensemble Classi-
fier (EC) steganalyzers and CNN-based ones. The first idea was to design a new con-
volutional neural network, unfortunately we did not succeed [IJ3, O4]. In fact, like all
previous research works on CNNs for image steganalysis in spatial domain, the proposal
was only competitive when the stego key controlling the embedding process remains the
same. Obviously, having a single key is not desirable, since it weakens the security of
the steganographic method performing the embedding. Despite this negative result, we
were then able to obtain a major result [C1] by paying a particular attention to the char-
acteristic failure of the first competitive CNN-based steganalyzer with the conventional
ones proposed by Xu et al. in 2016. A careful study of the detection performance of
this CNN that does not suffer from the single key limitation allowed to propose a criterion
to choose either the CNN or the combination SRM+EC for an input image. This very
satisfactory result has been presented in a international conference [C1] and two invited
national conferences [O2, O3], it has also encouraged us to continue with the exploration
of deep learning methods for image denoising and medical image analysis. I have also
been invited in march 2018 by the students of the CMI Bachelor of Computer Science
from the University of Franche-Comté to give an oral presentation introducing the field of
artificial intelligence during their R&D Day [O1].

PHD AND MASTER THESIS SUPERVISION

• Co-supervisor of 4 PhD students

– 2012.12 - 2015.12 / Bassam Alkindy
Dissertation: “Combining Approaches for Predicting Genomic Evolution”
Placement: Assistant Professor at University of Mustansiriyah, Baghdad, Iraq

– 2012.09 - 2015.10 / Ali Kahadum Idrees
Dissertation: “Distributed Coverage Optimization Techniques for Improving
Lifetime of Wireless Sensor Networks”
Placement: Assistant Professor at University of Babylon, Iraq

– 2008.09 - 2011-09 / Rémy Laurent
Dissertation: “Simulation du mouvement pulmonaire personnalisé par réseau
de neurones artificiels pour la radiothérapie externe”
Placement: Works in a private company

– 2003.09 - 2007.06 / Amine Abbas
Dissertation: “Optimisation de la durée de vie d’un réseau de capteurs”
Placement: Works in a private company
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• Co-supervisor of 7 Master students

– 2018.02 - 2018.09 / David Roche
Dissertation: “Deep learning pour la conception d’une intelligence artificielle
pour un jeu abstrait”

– 2018.02 - 2018.08 / Pierre Feilles
Dissertation: “Étude et mise en œuvre d’une approche de type deep learning
pour segmenter automatiquement le myocarde”

– 2017.02 - 2017.09 / Pierre Primet
Dissertation: “Étude et mise en œuvre d’une approche de type deep learning
comme outil d’aide à la détection d’une pathologie”

– 2015.02 - 2015.09 / Nils Schaetti
Dissertation: “Reservoir Computing : Étude théorique et pratique en recon-
naissance de chiffres manuscrits”
Placement: PhD student at Computer Science department (IIUN) of the Uni-
versité de Neuchâtel, Switzerland

– 2015.02 - 2015.09 / Jad Nassar
Dissertation: “Parallelization of a Simulation Code for Neuromorphic Comput-
ing”
Placement: PhD student at INRIA FUN Team, Lille

– 2010.02 - 2010.10 / Arnaud Aubert
Dissertation: “Contrôle actif d’écoulements aérodynamiques par réseaux de
neurones”

– 2003.02 - 2003.09 / Amine Abbas
Dissertation: “Mixage synchronisme/asynchronisme dans les réseaux
d’automates finis discrets”

RESEARCH PROJECTS

Over the past years I was involved in writing proposals for several calls, in particular calls
for proposals from the French National Research Agency (ANR). Unfortunately in this
latter case none has been accepted.

• ANR Calls for proposals

– Coordinator of the APACHE project which was submitted to the 2013 Specific
Support for Defence Research Projects and Innovation (ASTRID) program.
The objective of this project was to design an approach using Acoustic PUFs
(Physical Unclonable Functions) to Authenticate Computer Hardware and
Electronics. APACHE was labelled by the Pole Véhicule du Futur, French Pôle
de Compétitivité.

– Member of the JCJC (coordinated by a young researcher) MAPGEN project
which was submitted to 2012 call for proposals.
This project was planned to study mathematical and computing models able
to simulate genome dynamics in evolution, taking into account gene mutations
and genomic rearrangements.
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– Member of the CrypSKOD project which was submitted to 2006 SETIN call.
The CrypSKOD project, in which was involved the OPTICS Department of
the FEMTO-ST Institute and the R2D2 team from the IRISA, was a research
project intended to propose robust software and hardware cryptographic sys-
tems based on chaos.

• ISITE-BFC / Industry Calls for projects

– Member of the ADVANCES project which was successfully submitted to the
Second ISITE-BFC call for proposals in november 2017.
The Automatic Detection of Viable myocArdiac segmeNts Considering dEep
networkS (ADVANCES) project, which will have a three-year duration, has
been awarded 309,000 euros in february 2018.

ORGANIZATION OF CONFERENCE

Member of the organizing committee for the 9th International Meeting Statistical Implica-
tive Analysis (ASI9), which took place at the University Institute of Technology of Belfort-
Montbéliard (IUT Belfort-Montbéliard) from october 4 to 7 in 2017.

REVIEWER ACTIVITY

My peer review contributions for academic journals can be tracked and verified on
Publons website.

• Reviewer for international journals

– Algorithms in 2018

– Symmetry in 2018 (SJR Q2 in Computer Science)

– IEEE Journal of Microelectromechanical Systems (IF Web of Science JCR
2016/2017 2.124) in 2018

– Mathematics in 2018

– IEEE/ACM Transactions on Computational Biology and Bioinformatics (IF Web
of Science JCR 2016/2017 1.955) in 2018

– Journal of Computational Science (IF Web of Science JCR 2016/17 1.748) in
2015, 2016, 2017, and 2018

– Journal of Supercomputing (IF Web of Science JCR 2016/2017 1.326) in 2016

– Engineering Applications of Artificial Intelligence (IF Web of Science JCR 2015
2.368) in 2014

– Special issue of IEEE Computational Intelligence Magazine in 2012
(Topic: Computational Intelligence in Computer Vision and Image Processing)

• Reviewer for international conferences

– MENACOMM 2018, IEEE Middle East North Africa COMMunications Confer-
ence, Jounieh, Lebanon

https://publons.com/author/1226121/michel-salomon#profile
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– MMSys 2018 (IoT and Smart Cities track), ACM Multimedia Systems Confer-
ence, Amsterdam, Netherlands

– ISPA 2017, 15th IEEE International Symposium on Parallel and Distributed Pro-
cessing with Applications, Guangzhou, China

– CSE 2016, 19th IEEE Int. Conf. on Computational Science and Engineering,
Paris, France

– ICANN 2009, 19th International Conference on Artificial Neural Networks, Li-
massol, Cyprus

– LCN 2007, 32nd IEEE Int. Conf. on Local Computer Networks, Dublin, Ireland

COURSES TAUGHT

Since september 2002, I have mainly taught courses in Computer Architecture, Operating
systems, and Networks at University Institute of Technology of Belfort-Montbéliard (IUT
Belfort-Montbéliard) to students studying for a two-year university degree in technology
(DUT) in Computer Science. During the years 2011 through 2016, my teaching load
was in average of 280 hours. In addition to these courses, I also give some lectures at
Bachelor’s level and I supervise interns, in particular at the Master’s level.

LIST OF PUBLICATIONS

In the following list of publications, apart from publications [IJ19] and [B2], only the ones
issued from research works done since I became an assistant professor are listed. A
publication with a star ∗ in superscript at the end of the authors’ list means that they are
given in alphabetical order. The journal impact factor given for publications in 2016 and
2017 are provided by the 2016/2017 JCR release.

PEER REVIEWED INTERNATIONAL JOURNALS

[IJ1] Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Raphaël Couturier.
“Multiround Distributed Lifetime Coverage Optimization Protocol in Wireless Sen-
sor Networks”. In: The Journal of Supercomputing 74.5 (2018), pp. 1949–1972.
ISSN: 1573-0484. DOI: 10.1007/s11227- 017- 2203- 7. IF Web of Science JCR
1.326, SJR Q2 in Computer Science.

[IJ2] Régis Garnier et al. “Comparison of Metaheuristics to Measure Gene Effects on
Phylogenetic Supports and Topologies”. In: BMC Bioinformatics x (2017), x–y. IF
Web of Science JCR 2.448, SJR Q1 in Computer Science Applications.

[IJ3] Michel Salomon, Raphaël Couturier, Christophe Guyeux, Jean-François Couchot,
and Jacques M. Bahi. “Steganalysis via a convolutional neural network using
large convolution filters for embedding process with same stego key: A deep
learning approach for telemedicine”. In: European Research in Telemedicine /
La Recherche Européenne en Télémédecine 6.2 (2017), pp. 79–92. ISSN: 2212-
764X. DOI: 10.1016/j.eurtel.2017.06.001. SJR Q3 in Health Informatics.

http://dx.doi.org/10.1007/s11227-017-2203-7
http://dx.doi.org/10.1016/j.eurtel.2017.06.001


PEER REVIEWED INTERNATIONAL JOURNALS xiii

[IJ4] Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Raphaël Couturier.
“Perimeter-based coverage optimization to improve lifetime in wireless sensor
networks”. In: Engineering Optimization 48.11 (2016), pp. 1951–1972. DOI: 10.
1080/0305215X.2016.1145015. IF Web of Science JCR 1.728, SJR Q2 in Com-
puter Science.

[IJ5] Pierre-Emmanuel Leni et al. “Development of a 4D numerical chest phantom
with customizable breathing”. In: Physica Medica: European Journal of Medical
Physics 32.6 (2016), pp. 795–800. DOI: doi:10.1016/j.ejmp.2016.05.004. IF Web
of Science JCR 1.99, SJR Q2 in Radiology, Nuclear Medicine and Imaging.

[IJ6] Ali Kadhum Idrees, Karine Deschinkel, Michel Salomon, and Raphaël Couturier.
“Distributed lifetime coverage optimization protocol in wireless sensor networks”.
In: The Journal of Supercomputing 71.12 (2015), pp. 4578–4593. DOI: 10.1007/
s11227-015-1558-x. IF Web of Science JCR 1.088, SJR Q2 in Computer Sci-
ence.

[IJ7] Julien Henriet, Pierre-Emmanuel Leni, Rémy Laurent, and Michel Salomon.
“Case-Based Reasoning adaptation of numerical representations of human or-
gans by interpolation”. In: Expert Systems with Applications 41.2 (2014), pp. 260–
266. DOI: 10.1016/j.eswa.2013.05.064. IF Web of Science JCR 2.981, SJR Q1 in
Computer Science.

[IJ8] Jean-François Couchot, Karine Deschinkel, and Michel Salomon∗. “Active MEMS-
based flow control using artificial neural network”. In: Mechatronics 23.7 (2013),
pp. 898–905. DOI: 10.1016/j.mechatronics.2013.02.010. IF Web of Science JCR
1.871, SJR Q1 in Computer Science.

[IJ9] Julien Henriet et al. “EQUIVOX: An example of adaptation using an artificial neural
network on a case-based reasoning platform”. In: Biomedical Engineering: Appli-
cations, Basis and Communications 25.02 (2013), p. 1350027. DOI: 10 . 4015 /
S1016237213500270. IF Scopus 0.233, SJR Q4 in Bioengineering.

[IJ10] Rémy Laurent, Pierre-Emmanuel Leni, Michel Salomon, Julien Henriet, and
Régine Gschwind. “Integration of the lung motion into 3D phantoms”. In: Physica
Medica: European Journal of Medical Physiscs 29, Supplement 1 (2013), e25–.
DOI: 10.1016/ j .ejmp.2013.08.081. IF Web of Science JCR 1.763, SJR Q2 in
Radiology, Nuclear Medicine and Imaging.

[IJ11] Jacques M. Bahi, Nathalie Coté, Christophe Guyeux, and Michel Salomon∗.
“Protein folding in the 2D Hydrophobic–Hydrophilic (HP) square lattice model is
chaotic”. In: Cognitive Computation 4 (1 2012), pp. 98–114. DOI: 10.1007/s12559-
011-9118-z. IF Web of Science JCR 1.933, SJR Q2 in Computer Science Appli-
cations.

[IJ12] Jacques M. Bahi, Jean-François Couchot, Christophe Guyeux, and Michel
Salomon∗. “Neural networks and chaos: Construction, evaluation of chaotic net-
works, and prediction of chaos with multilayer feedforward networks”. In: Chaos:
An Interdisciplinary Journal of Nonlinear Science 22.1 (2012), p. 013122. DOI:
10.1063/1.3685524. IF Web of Science JCR 2.049, SJR Q2 in Applied Mathe-
matics.

http://dx.doi.org/10.1080/0305215X.2016.1145015
http://dx.doi.org/10.1080/0305215X.2016.1145015
http://dx.doi.org/doi: 10.1016/j.ejmp.2016.05.004
http://dx.doi.org/10.1007/s11227-015-1558-x
http://dx.doi.org/10.1007/s11227-015-1558-x
http://dx.doi.org/10.1016/j.eswa.2013.05.064
http://dx.doi.org/10.1016/j.mechatronics.2013.02.010
http://dx.doi.org/10.4015/S1016237213500270
http://dx.doi.org/10.4015/S1016237213500270
http://dx.doi.org/10.1016/j.ejmp.2013.08.081
http://dx.doi.org/10.1007/s12559-011-9118-z
http://dx.doi.org/10.1007/s12559-011-9118-z
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[IJ13] Rémy Laurent, Régine Gschwind, Michel Salomon, Julien Henriet, and Libor
Makovicka. “Perspective de la plate-forme NEMOSIS dans le cadre d´une réduc-
tion de doses en imagerie”. In: Radioprotection 47.4 (2012), pp. 599–617. DOI:
10.1051/radiopro/2012030. IF Web of Science JCR 0.508, SJR Q3 in Nuclear
Energy and Engineering.

[IJ14] Rémy Laurent et al. “Data Processing using Artificial Neural Networks to Im-
prove the Simulation of Lung Motion”. In: Biomedical Engineering: Applications,
Basis and Communications (BME) 24.06 (2012), pp. 563–571. DOI: 10 . 4015 /
S1016237212500524. IF Scopus 0.233, SJR Q4 in Bioengineering.

[IJ15] Rémy Laurent et al. “Respiratory lung motion using an artificial neural network”.
In: Neural Computing and Applications 21.5 (2012), pp. 929–934. DOI: 10.1007/
s00521-011-0727-y. IF Web of Science JCR 1.492, SJR Q2 in Artificial Intelli-
gence.

[IJ16] Jad Farah et al. “Development of a new CBR-based platform for human contami-
nation emergency situations”. In: 144.1-4 (2011), pp. 564–570. DOI: 10.1093/rpd/
ncq440. IF Web of Science JCR 0.894, SJR Q3 in Radiology, Nuclear Medicine
and Imaging.

[IJ17] Jacques M. Bahi and Michel Salomon∗. “A decentralized energy-based diffusion
algorithm to increase the lifetime of MANETs”. In: Computer Networks 54.16
(2010), pp. 2887–2898. DOI: 10 .1016/ j . comnet .2010.07 .021. IF Web of Sci-
ence JCR 1.446, SJR Q2 in Computer Networks and Communication.

[IJ18] Jacques M. Bahi, Raphaël Couturier, Kamel Mazouzi, and Michel Salomon∗.
“Synchronous and asynchronous solution of a 3D transport model in a grid com-
puting environment”. In: Applied Mathematical Modelling 30.7 (2006), pp. 616–
628. DOI: 10.1016/j.apm.2005.06.017. IF Web of Science JCR 2.291, SJR Q1 in
Applied Mathematics and Modeling and Simulation.

[IJ19] Michel Salomon, Fabrice Heitz, Guy-René Perrin, and Jean-Paul Armspach. “A
massively parallel approach to deformable matching of 3D medical images via
stochastic differential equations”. In: Parallel Computing 31.1 (2005), pp. 45–71.
DOI: 10.1016/j.parco.2004.12.003. IF Web of Science JCR 1.000, SJR Q2.

PEER REVIEWED NATIONAL JOURNALS

[NJ1] Rémy Laurent et al. “Utilisation d’un réseau de neurones artificiels pour la sim-
ulation des mouvements pulmonaires”. In: Cancer/Radiothérapie 15.2 (2011),
pp. 123–129. DOI: 10.1016/j.canrad.2010.07.636.

[NJ2] Libor Makovicka et al. “Avenir des nouveaux concepts des calculs dosimétriques
basés sur les méthodes de Monte Carlo”. In: Radioprotection 44.1 (2009), pp. 77–
88. DOI: 10.1051/radiopro/2008055.

BOOK CHAPTERS

[B1] Marc Sauget, Sylvain Contassot-Vivier, and Michel Salomon. “Parallelization of
neural network building and training: an original decomposition method”. In: Ad-
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GENERAL INTRODUCTION

1/ MOTIVATIONS

Many innovations are the results of ideas taken from natural processes. For example, in
the context of combinatorial optimization, which we studied during our PhD thesis, sev-
eral stochastic algorithms inspired from physical or biological phenomenons, like particle
swarm optimization and simulated annealing, have been designed over the past decades.
Another field of computer science in which similar ideas have been applied with a large
success is machine learning, leading to new developments in artificial intelligence. The
fascinating information processing capabilities of the brain, an extremely complex and
dense network that interconnects billions of small processing units called neurons, has
particularly motivated scientists to develop mathematical models in order to mimic its
functioning. These models have given rise to the branch of machine learning called arti-
ficial neural networks due to their analogy with biological neural networks.

Since the introduction of the perceptron at the end of the 1950s, neural networks have
passed through several boom-and-bust episodes. The backpropagation algorithm popu-
larized by Rumelhart and al. has thus been the starting point of the multilayer networks
era. Earlier versions of these networks were shallow, typically composed of one hidden
layer. It is well-known that they are universal approximation tools for nonlinear systems.
More precisely, it has been proved that the commonly used types of multilayer feedfor-
ward neural networks with a single hidden layer, also known as MultiLayer Perceptron
networks, and Radial Basis Function networks can approximate any nonlinear function
to any arbitrary precision. On the one hand MLPs construct global approximations, on
the other hand RBFs have local approximation capabilities. Each family of networks has
some strengths and weaknesses, for example MLP networks are usually smaller whereas
RBF ones will be trained much faster.

After a period without any real progress, more biologically plausible and complex models
have then been developed. Indeed, thanks to the increasing computing power avail-
able at a lower cost, spiking and deep networks have emerged. These latter have led
to breakthrough results in many problems with such impressive performances that they
have produced a revival of interest in neural networks, becoming the new hip branch of
machine learning known as deep learning. As a result, today neural networks are used to
solve complex real world problems in a wide range of areas such as speech recognition,
prognostics and health management, medical image analysis, and so on. For that matter,
neural networks, and more especially deep learning, have achieved the most stunning
achievements in artificial intelligence over the past few years. An iconic example is Al-
phaGo, the first program that managed to beat one of the best professional Go player.

Motivated by the desire to take advantage from the capabilities of neural networks to
model complex relationships between inputs and outputs, we have investigated during
the past decade their applications to many different problem domains. The research
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works described in this manuscript reflect the network architecture evolution, starting with
works where the multilayer perceptron is considered to ones that study deep networks,
and highlights the suitability of neural networks for successfully solving tasks in different
areas. When designing a neural network for a given problem several questions have to be
addressed, among which the main one is the choice of the architecture. Even if the kind
of problem to be solved and the data are guidelines, usually allowing to choose between
a feedforward or a recurrent network, between a supervised or an unsupervised training,
and to define the inputs and outputs, few indications are available for the definition of the
inner hidden part.

2/ CONTRIBUTIONS AND OUTLINE

This manuscript presents different research works in which neural networks are used to
solve prediction or classification problems. The first part, which consists of Chapters 1
to 3, deals with problems in which the multilayer perceptron architecture is used as a
function approximator. Thus, we show that a multilayer perceptron neural network can
simulate lung motion and is able to predict the trajectory of several anatomical feature
points. It can also be somewhat a substitute of a computational fluid dynamics software
for active airflow control, and allows to build a true chaotic neural network.

The second part explores deep learning architectures in Chapters 4 and 5, while in the
final chapter the Reservoir Computing concept is studied. First of all, convolutional neural
networks (a main category of deep learning) are investigated to detect whether an image
embeds a hidden message or not. The obtained steganalysis approach was at the time
of its publication the state-of-the-art one. Then we propose a fully convolutional neural
network for image denoising that is an encoder-decoder. This one can deal with different
kinds of noise, but currently it is trained specifically for a targeted noise. Finally, consider-
ing the reservoir computing paradigm studied by colleagues of our research institute, the
application of an Echo State Network, a recurrent architecture, on a handwritten digits
recognition problem (namely the MNIST benchmark problem) is studied.

The structure of the manuscript follows the contributions presented in the above para-
graphs and is outlined below.

• Chapter 1 takes place in the context of lung cancer treatment with external-beam ra-
diation therapy. It presents an innovative method for the management of respiratory
motion, since breathing motion is a crucial problem during radiation treatment of
many tumors. The proposed approach allows to simulate the position of anatomical
feature points and thus to provide a customized simulation of lung motions. Differ-
ent neural networks are designed and trained, first to preprocess the input data and
then to produce the movements of normal tissues.

• Chapter 2 describes the design of a multilayer network to approximate the force
induced by an airflow over a backward facing step. The idea is to have fast and ac-
curate predictions that allow to perform active control in order to maximize the force
applied on the back of the step. This work is a proof of concept in the perspective of
performing active control of turbulent flows for drag reduction and thus to improve
the aerodynamic performance of moving objects.
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• Chapter 3 investigates the use of neural networks when dealing with chaos. More
precisely, we define a method to build chaotic neural networks using a chaotic itera-
tions framework that enables to prove a chaotic behaviour in a rigorous mathemati-
cal sense. The dual case of checking whether a neural network is chaotic or not is
also investigated. Finally, the ability of traditional multilayer perceptron networks to
predict a chaotic dynamics, namely the folding process in 2D model, is discussed.

• In Chapter 4, following the trend of using deep learning for classification problems
in computer vision, we first try to design a Convolutional Neural Network (CNN)
architecture to solve the problem of detecting the existence of a secret message in
an image. Unfortunately, the network is only competitive when the embedding of the
message is done with the same key whatever the image. Thanks to a careful study
of the images for which CNN-steganalysis fails, considering the CNN architecture
giving the best detection rates at the time of this work, we are then able to propose
a criteria to choose between the CNN and the classical steganalysis approach for a
given input image. This proposal offers state-of-the-art detection performances and
can perform blind steganaysis.

• Chapter 5 is devoted to the description of our most recent works, namely the design
of a fully CNN architecture for image denoising. We present the great lines of the
network architecture that consists in an encoder-decoder with skip connections and
the loss function chosen to train the network is examined. The first experiments
show that it can achieve promising results and treat different types of noise, namely
additive white Gaussian noise and speckle noise.

• Chapter 6 is inspired by the performance of a neuromorphic computer developed by
colleagues of the OPTICS department from the FEMTO-ST Institute on a speech
recognition task. Its ability to classify spoken digits at a throughput of one million
words per second, with a very low word error rate, has convinced us to explore
the underlying concept: the Reservoir Computing (RC) paradigm, on which their
physical implementation is based. Therefore, in this chapter we study the Echo
State Network (ESN) architecture, the machine learning representative of RC, and
we apply it to the MNIST handwritten digit recognition problem for which, at a first
glance, it seems not to be designed. For this image classification problem, the
lowest error provided by an ESN is far away from the best ones given by state-of-
the art CNNs, but slightly lower than those of the LeNet convolutional networks.

Finally, conclusions are drawn and future directions for research are given.
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1
SIMULATION OF LUNG MOTION

Among the different cancers of the thorax and the abdomen, lung cancer is the most
prevalent and relevant disease for external-beam radiation therapy. Moreover, lung can-
cer is responsible for nearly one in five cancer deaths worldwide, being the leading cause
of cancer deaths in men in many countries (such as in France) and in the top three ones
in women. In fact, according to the World Heath Organization, cancer was the cause
of death for 8.8 millions persons in 2015 and lung cancer was the main type of fatal
cancer (1.69 millions deaths), followed by liver cancer (788,000 deaths) and colorectal
cancer (774,000 deaths). Cancer mortality statistics for France, provided by the Institut
National du Cancer (INCA), also clearly show that while lung cancer stagnates in men,
it progresses strongly in women with a mortality rate getting closer to that of the breast
cancer. Therefore, a better understanding of the individual lung motion of each patient
would allow to follow the evolution of the clinical target volume according to the breathing
phase, and thus to optimize the radiation therapy dose delivery. There is also a greater
need for precision in lung motion monitoring due to the development over the past decade
of stereotactic radiation therapy [1]. Indeed, by comparison with conventional radiation
therapy, the stereotactic one employs multiple beams and thus delivers higher doses of
radiation (up to 20 Gy during a session versus 2 Gy). On the one hand there is clinical
evidence of survival advantage for higher dose levels which can be delivered with a better
tumor targeting and on the other hand avoiding as much as possible normal tissues is of
increasing importance due to the growing use of concomitant chemotherapy. Compared
to chemotherapy, which is a treatment that affects the whole body of a patient, radiation
therapy is a local treatment which focuses on cancer cells.

A four-dimensional computed tomography (4D-CT) scanner can provide information on
the tumor movement, but biases and errors on the localization can be introduced and
limiting the use of 4D-CT is interesting for radiation protection. The purpose of this chap-
ter, which is a summary of our collaboration with colleagues of the IRMA team from the
Chrono-Environnement laboratory [2, 3, 4], taking place during Remy Laurent’s PhD the-
sis co-supervising, is thus to present an innovative method to simulate the position of
points in a person’s lungs at each breathing phase. The proposed approach consists of
two steps using both MultiLayer Perceptron (MLP) neural networks and is based on data
provided by the 4D-CT scanner of several patients. The first step is a data augmentation
technique allowing to build a training set, which is then used in the second step to train a
neural network that learns the lung motion. After training, this latter network can produce
a customized simulation for breathing and thus simulates the respiration of an unknown
patient. The resulting NEural NEtwork MOtion SImulation System (NEMOSIS) software
platform has been protected by means of a patent [5].

7
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The chapter is organized as follows. First, in Section 1.1 the limitations of the 4D-CT
scanner and alternative approaches to simulate lung motion are discussed. In the follow-
ing section, the data set and our proposal, more particularly the neural networks used to
improve the data set and learn the lung movement are described. The obtained results
are then presented in Section 1.3 and discussed in Section 1.4.

1.1/ INTRODUCTION

Radiation therapy, also called radiotherapy, is one of the most common treatments for
cancer. It uses high doses of radiation to kill cancer cells and shrink tumors. The more
the radiation beams concentrate on the targeted tumor, the better they can break of the
DNA inside the cancer cells, and thus the more likely they are to prevent the growth
and the division of the cells, leading ultimately to damages that cause them to die. In
the case of lung tumors, it is crucial to be able to track them precisely, otherwise the
respiratory motion will be a major problem in the treatment, reducing its efficiency. 4D-
CT is a medical imaging modality used in routine clinical practice that enables temporal
synchronization of respiratory acquisition, but at the cost of increasing patients’ exposure
to radiation (around 35 times the annual natural exposure). Even if the proposed method
is based on data provided by the 4D-CT, our objective is not to recover the locations given
by the 4D-CT, but rather to give a smooth realistic and regular motion simulation.

Let us start by giving some details on the 4D-CT acquisition process. As can be seen in
Figure 1.1, it consists in the acquisition of 3D-CT data throughout the respiratory cycle.
For each table position, the respiratory cycle is represented by 10 uniformly distributed
“phases”, where each phase corresponds to an instant in the cycle. The phase values
range from 0% to 100%, with 0% and 50% which represent, respectively, the maximum
exhalation and inspiration. Furthermore, the two extreme phase values, 0% and 100%,
point to the same phase due the periodicity of the respiratory cycle. The final 4D-CT scan
is thus composed of 10 3D-CT images representing the different phases. Therefore, the
acquired 3D-CT data are combined based on a respiratory-correlated signal which is
acquired simultaneously (RPM signal) so that images belonging to the same phase are
concatenated to form a single representative 3D-CT image. The figure shows how the
image for the 50% phase is built using images from several respiratory periods.

Patients’ ability to hold their breath reproducibly greatly impacts on the temporal distri-
bution of the phases. In the figure, although phases 51%, 59%, and 44% are close to
the target phase of 50%, the corresponding RPM signals are very different, with a gap
of more than 1.25 cm (the average respiratory amplitude is 1.5 cm). These differences
explain the resulting kinetic artifacts which can be easily detected by the discontinuity
in the anatomical structures being imaged. Another kind of artifacts, characterized by a
poor definition of anatomical structures, is the blur associated with slow rotation time of
the x-ray tube. It has been shown [6] that both artifacts lead to contouring error of the
Gross Tumor Volume (GTV), with size differences up to 90%. Thus, even if 4D-CT imag-
ing is commonly used, it leads to images with artifacts because of its inability to adapt to
respiratory variations, in period and magnitude, and slow acquisition process unsuitable
to capture tumor motion.

Different research works have investigated the simulation of breathing motion. However,
they usually lack either in time efficiency or in precision. Non-linear registration methods
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Figure 1.1: 4D-CT imaging: reconstruction process of a 3D-CT image at a discrete phase
(50% in this example) for a patient according to its respiratory signal.

applied to images issued from different breathing phases allow to estimate respiratory
motion fields [7, 8], but underlying physiological and anatomical processes of breathing
are mostly ignored. To take into account these processes and thus have a more realistic
motion, various biomechanical model based simulation methods have been proposed.
Sarrut et al [9, 10] have designed an algorithm based on the continuum mechanics the-
ory, considering the impact of the diaphragm and ribs on lung deformations. They ob-
tained subvoxel accuracy, but their proposal cannot be run in real-time. The approach of
Boldea et al. [11], which simulates a 4D-CT using two extreme 3D-CT scanner images
and vector interpolation to build intermediate images, gives similar performance. Meth-
ods based on marks at different positions on the patient’s skin and a scanner image [12]
can face the real-time constraint, but they offer low-precision. An important point that
should be taken into account when designing a respiratory model is the intrinsic hystere-
sis behavior of the breathing motion. In fact, a respiratory model able to reproduce the
hysteretic behavior of lungs would enable the radiation therapy to be more accurate, since
lung tumors are also subject to hysteresis [13].

To overcome the limitations and drawbacks of 4D computed tomography, we have first
proposed a method using a multilayer perceptron neural network for a real-time simula-
tion of lung motion [2]. Artificial Neural Networks (ANN) are widely used in medicine, for
example to help diagnosis of breast [14] and lung [15] cancer, in dosimetric computations
[16], to predict a tumor motion according to the position of external markers [17], and so
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on. Murphy et al. [18] have also trained a MLP with one hidden layer in order to simulate
the breathing signal of a patient in real time. Then, in order to improve the quality and
the accuracy of the motion information, we have investigated the use of additional neural
networks to process the 4D-CT data used to learn the movement [4]. Such a prepro-
cessing of data is relevant [19] in our case for two reasons. First, it allows to effectively
increase the size of the data set and second it reduces the influence of artifacts and bias
introduced by 4D-CT. More precisely, the initial small and noisy data set is used to train
neural networks, from which a larger set is then built. In this way, we obtain smoothed
data that allow to greatly improve the learning of lung motion by another neural network.
Recently, Park et al. [20] have proposed an architecture that is a combination of fuzzy
logic and a neural network with four hidden layers (explaining why they call their proposal
fuzzy deep learning) to predict intra- and inter-fractional variations. Intra-fractional mo-
tion indicates changes observed when the patient receives a radiation therapy session,
while inter-fractional motion covers variations arising between different sessions (such as
tumor weight gain or loss). This predictor, which was trained on breathing data of 130 pa-
tients collected using the CyberKnife Synchrony treatment facility, produces an accurate
estimate of the next breathing signal before the incoming signal.

1.2/ MATERIALS AND METHOD

1.2.1/ DATA SET CONSTRUCTION

The neural network designed to simulate the lung motion of a given patient is trained
through a holdout validation, using the motion of anatomical feature points during the
breathing cycle. Hence, the data set consists of trajectories of feature points across the
10 discrete and regular phases of the respiratory cycle in 4D-CT images from 10 patients.
Among them, five patients (patients 0 − 4) compose the training set, while the remaining
ones (patients 5 − 9) are used for testing. The different feature points were localized
by a radiation therapist in non-pathogenic areas and thus our proposal only considers
normal tissue motion. As an illustration, Figure 1.2 presents for patient 1 the plotting of
two feature points for phases 10% and 70%.

Obviously, the manual plotting of the feature points introduces some biases and noise in
the data. Indeed, on the one hand when a point is plotted the corresponding phase is
not always displayed by the scanner and, on the other hand, the resolution of the 3D-CT
image limits the accuracy of the plotted points localization. The limited accuracy comes
from the use of different 4D-CT scanning devices and protocols, producing images with
inhomogeneous spatial resolution (voxel size of 1 × 1 × 2 mm3 and 1 × 1 × 2.5 mm3).
Table 1.1 shows how the 1,518 features points of the data set are distributed among the
10 patients. Let us notice that patients 4, 7− 9 belong to the PoPi-model [21] and that two
phases are missing for patient 0.

Table 1.1: Distribution of the feature points among the different patients.
Patients used for training the MLP used for data preprocessing Patients used for testing

Patient ID 0 1 2 3 4 5 6 7 8 9
Lung vol. 4.62 2.86 5.48 2.60 5.94 3.10 4.42 3.72 4.91 4.05
Point/phase 21 25 24 8 38 6 4 10 10 10
Phases [0; 20 − 70; 90] [0 − 90] [0 − 90] [0 − 90] [0 − 90] [0 − 90] [0 − 90] [0 − 90] [0 − 90] [0 − 90]
Total points 168 250 240 80 380 60 40 100 100 100
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Figure 1.2: Definition of two points on CT images from patient 1 for (a) phase 10% and
(b) phase 70%.

The carina, the point where the trachea splits into two bronchi, has been chosen as
anatomical landmark because it was easy to identify regardless of the patient. It has
been marked for all patients and phases, and its position at phase 0% defines thus the
axis origin of the common coordinate system. The coordinates of all points have been
normalized according to it. Figure 1.3 gives a view of the spreading of the feature points
for patients 0 − 4.

1.2.2/ MULTILAYER PERCEPTRON NEURAL NETWORKS

In a first step, to reduce potential sources of error and enlarge the data set, the plotted
points are fitted using a multilayer perceptron per feature point, a feedforward neural
network architecture well-known for its universal approximation property [22]. All these
networks have the same topology. They have four inputs: the three coordinates of the
considered feature point at phase 0% and the phase number for which a neural network
must predict its new position (the output vector is thus three-dimensional). They consist
of a single hidden layer of sigmoidal neurons, whose number is determined through an
incremental approach [23] according to the motion complexity, and an output layer of
neurons with a linear activation function. Once trained, a neural network associated to a
feature point can produce a regular and smooth description of its trajectory, which does
not depend on the scanner resolution and is less noisy. Such a network can also be used
to enlarge the data set with missing information (like phases 10% and 80% for patient 0).

Thanks to this data preprocessing, a corrected version of the initial data set, less noisy
and more realistic, can be obtained. The corrected data set, which will be subdivided
in learning, validation, and testing sets, is then expected to improve the performance
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Figure 1.3: Distribution of the points on patients 0 − 4 from the training set.

of the multilayer perceptron simulating the lung motion in the NEural NEtwork MOtion
SImulation System (NEMOSIS) software platform. The topology of this MLP, trained in a
second step, is nearly similar to the one of the networks doing the data preprocessing, it
has simply twice more inputs for a patient’s point:

• its coordinates at phase 0%;

• its coordinates at phase 50%;

• the lung volume to identify the patient;

• the phase number for which the point location must be predicted.

The neural networks are trained to minimize the Mean Squared Error (MSE) using the
quasi-Newton Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS),
in combination with the Wolfe linear search to determine the optimal step size [24]. This
algorithm is appealing because it achieves fast convergence and has a small memory
consumption. Five networks are trained to simulate the lung motion using each time
the feature points of a different patient as validation set for overfitting control (holdout
validation with 5 patients).

Finally, Figure 1.4 gives an overview of our proposal. As can be seen, in the learning
process a data preprocessing allows to obtain a Corrected Learning Set (CLS) from the
Initial (ILS) one, which is then used to learn the lung motion. Once the learning process
is completed, the normal (or clinical routine) execution allows to predict the lung motion
of an unknown patient given phases 0% and 50%.
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Figure 1.4: Overview of the proposed approach for lung motion simulation (ILS = Initial
Learning Set; CLS = Corrected Learning Set; CVS = Corrected Validation Set).

1.3/ RESULTS

The neural networks issued from the learning process usually have a hidden layer of less
than ten neurons. Therefore we will only present in the following part results correspond-
ing to this network configuration. From a computational point of view, on a typical laptop
(a dual-core CPU running at 2.1 GHz) the NEMOSIS platform takes about 205 ms to
compute the points of patient 4 (the one with the most feature points) over 100 phases,
which means that it provides an almost real-time simulation of lung motion.

To obtain a complete breathing cycle with a good continuity between adjacent simulated
phases 99% and 0%, the phase domain is extended between -20% and 120%. Since
the lung motion is periodic, a correspondence between the phases of this new domain is
done as follows:

• on the upper part of the domain, phases 0%, 10%, and 20% correspond, respec-
tively, to phases 100%, 110%, and 120%;

• while on the lower part, phases 80% and 90% are, respectively, equal to phases
-20% and -10%.

1.3.1/ DATA PREPROCESSING

To highlight the interest of the data preprocessing step, Figure 1.5 shows the noisy tra-
jectories resulting from the 4D-CT for points belonging to patient 0 (points 1 and 2) and
patient 4 (point 3) and the smoothed ones resulting from the treatment. The trajectories
are given considering the z cranio-caudal (from head to foot) axis. Note that in these
figures phases 10%, 20%, 30%, and 40% give the point position for them and also, re-
spectively, for phases 90%, 80%, 70%, and 60%.
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(a) Trajectories of point 1 from patient 0. (b) Trajectories of point 2 from patient 0.

(c) Trajectories of point 3 from patient 4.

Figure 1.5: Impact of the data preprocessing step on the motion of three points.

The bias introduced by the 4D-CT are clearly visible in the different figures. For example,
in Figure 1.5(a) the 4D-CT describes a large displacement for point 1 at the end of the ex-
halation (towards phase 50%) covering 5 mm between two consecutive phases, whereas
a small displacement is expected. In Figure 1.5(b), point 2 of patient 0 seems motionless
between phases 30−40% and 60−70%. The missing phases 10% and 80% for the points
from patient 0 can also be noticed in these two figures. The expected hysteresis-like mo-
tion of the lung clearly appears in the three figures, for both 4D-CT and smoothed data.

1.3.2/ PREDICTED RESPIRATORY MOTION

The quality of the respiratory motion predicted by the NEMOSIS platform is studied using
results given according to the patient considered as validation set to control overfitting.
Among the five validation patients, the results obtained for patient 1 will not be presented
because this patient is at the border of the definition domain, being the one whose points
are the most scattered inside the lungs. However, this patient is not completely excluded
from the data set, since it remains in the training set. The tables presented thereafter give
the average error between the expected positions and the ones predicted by the neural
network for the points of different patients. The average error is computed using only
10 phases, which is the number of phases in a 4D-CT image.
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Table 1.2: Average errors (standard deviation) in mm according to the number of phases
that defines the motion of the different points.

Validation Phases
Patient ID 10 20 50 100
0 0.88 (0.83) 0.86 (0.82) 0.86 (0.82) 0.87 (0.80)
2 1.01 (0.81) 1.05 (0.87) 1.00 (0.84) 1.02 (0.83)
3 1.23 (0.80) 1.08 (0.63) 0.92 (0.68) 1.00 (0.65)
4 1.35 (0.96) 1.36 (1.01) 1.27 (0.99) 1.27 (1.00)

Table 1.2 is devoted to the study of the impact of the number of phases describing the
motion of the points in the training set. More precisely, it shows the evolution of the
average error (in mm) for the points of the patient used as a validation set. Several
observations can be made. First, the prediction error is the more stable for patient 2,
whatever the number of phases, because the points of this patient are localized in a lung
area with a simple motion. Second, conversely patient 4 has the largest errors due to the
biggest lung volume. Third, 50 is the best number of phases to describe the motion and
therefore this value is retained to enlarge the original data set. Obviously, the errors for
patient 0 are biased by the two missing phases and more particularly the 80% one that
usually exhibits large variations in motion.

Finally, we will present the motion prediction performance of the neural network obtained
with patient 2 as validation set. In that case the 1, 518 points of the initial data set have
led to an enlarged corrected data set of 6, 200 points used as follows:

• the Corrected Learning (training) Set (CLS) is composed of 4, 600 points from pa-
tients 0, 1, 3, and 4 considering 50 phases;

• patient 2 (1, 200 points) defines the Corrected Validation Set (CVS) ;

• the remaining 400 points compose the testing. They correspond to the feature points
of patients 5 − 9, which are defined over 10 phases (see Table 1.1).

Hence, the corrected data set is subdivided in such a way that the learning, validation,
and testing sets respectively represent about 74%, 20%, and 6% of the whole data. Both
learning and validation points have been preprocessed to improve the training of the net-
work simulating lung motion. The testing points have not undergone this preprocessing,
since in a normal execution the network will take the original 4D-CT data as input.

Table 1.3 presents the results obtained for the patients belonging to the testing set for
two training / validation setups: one that uses the initial data set (ILS/IVS) and another
its corrected version (CLS/CVS) provided by the proposed preprocessing. First, these
results clearly show the relevance of the data preprocessing as the (CLS/CVS) setup
always improves the prediction accuracy. The mean improvement of the accuracy is
about 16% and reaches 30% for patient 9. Second, great error variations can be observed
according to the patient. Indeed, our approach appears to be sensitive to the coverage of
the possible patients, since the largest errors are obtained for patients 7 and 9 whose lung
volumes are the most different from those of the patients used during training. A neural
network can only give suitable predictions for unknown inputs similar to some inputs used
during the training. For patients 5, 6, and 8, the errors are lower because their respective
lung volume is close to one of the patients from the learning set.
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Table 1.3: Average errors (standard deviation) in mm obtained for the different test pa-
tients (Initial / Corrected - Learning / Validation Sets).

Patient ID ILS / IVS CLS / CVS
5 1.15 (0.68) 1.02 (0.62)
6 1.45 (0.55) 1.25 (0.72)
7 2.30 (2.32) 2.00 (2.26)
8 1.37 (0.96) 1.16 (0.83)
9 2.18 (1.49) 1.53 (1.15)

(a) Motion simulated for patient 6. (b) Motion simulated for patient 8.

Figure 1.6: Motion simulated for two points, each belonging to a different patient.

In order to further check if NEMOSIS is able to produce a realistic lung motion for normal
tissues, we carried out a comparison of its prediction with a linear approximation. This
approximation is obtained through a linear regression between the maximum exhalation
and expiration phases (0% and 50%), without taking into account the hysteresis. It leads
to a symmetrical motion between the phase ranges 0 − 50% and 50 − 100%. Figure 1.6
shows the motion predicted for two distinct points from testing sets, together with the
trajectories obtained by linear regression and from 4D-CT data. The first one (a) belongs
to patient 6, while the second one (b) is from patient 8. Obviously, the linear approximation
is not accurate enough to describe the motion, being ineffective to simulate a motion
whose gradient depends on the phase, as highlighted by the 4D-CT data. Conversely,
the motion predicted by NEMOSIS is more relevant: it exhibits an hysteric motion closer
to the 4D-CT. Furthermore, when the 4D-CT produces a motion without hysteresis, as in
Figure 1.6(a), the neural network simulates a motion that has one. The minimum position
of both points is between the 50% and 60% phases, while we expected the 50% phase
to be the minimum, because such behavior appears in the data used for the training.

This latter observation is reinforced by the average prediction errors, shown in Figure 1.7,
for the points belonging to patient 8. According to the respective error histograms, com-
puted without considering the 0% and 50% phases since the error would have be 0 for
the linear regression, the neural network gives in average positions which are closer to
the 4D-CT and have a lower standard deviation. We can also note that compared to the
4D-CT images the average prediction errors are less than 2 mm, except for point 2, and
that is lower than the z-axis image resolution.
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Figure 1.7: Comparison of NEMOSIS with linear regression: average prediction errors for
all points of patient 8, considering almost all phases (except 0% and 50%).

1.4/ DISCUSSION

Even if the proposal is based on 4D-CT data that contain artifacts, both data prepro-
cessing and NEMOSIS have been validated, and thus we have a tool able to accurately
simulate the lung motion. Unfortunately, in spite of the good performances shown previ-
ously, this version of NEMOSIS is not suitable for clinical use due to several limitations.
First, NEMOSIS takes input data from two extreme breathing phases (0% and 50%) and
even if the data for each phase could be acquired independently using a 3D-CT, in prac-
tice it is not possible. Indeed, it would suppose that the patient can control its breathing
and block its airflow for a long time, which is usually difficult for patients suffering from lung
cancer. Thus, to obtain the images of both phases, the 4D-CT scanner that has a much
higher dosimetric impact than its 3D counterpart (7 times more dose delivered) must still
be used. Second, as the objective is to follow the tumor, the radiation therapists must
define the tumor contour in both phases. However, such contouring is again practically
intractable.

In order to improve the patient’s condition effectively, an optimized version of NEMOSIS
[3] using only 5 inputs (NEMOSIS(5)) instead of 8 (inputs) (NEMOSIS(8)) has been stud-
ied. In this new version, only one respiratory phase, namely the 0% phase, is used to
define the coordinate of a point. Hence, a single 3D-CT image, in which the tumour is
contoured, is sufficient to provide a localized and customized lung motion using a 3D
model of a patient. Compared to NEMOSIS(8), the “optimized” NEMOSIS(5) version is
less accurate: in the most favorable case, when patient 2 is used as a validation set,
errors increase by 35%. That suggests that the deleted 50% respiratory phase brings a
valuable information allowing to obtain more accurate predictions. In fact, both phases
give a measure of the motion amplitude, an information complementary to the lung vol-
ume, which characterizes the patient. The study presented in [3], based on three new
patients using images focused on the tumor, has shown that, in the worst case, an aver-
age accuracy of 3 mm for all points of a patient, at every phase, is obtained. Another point
investigated in [3] to assess the potential clinical use of NEMOSIS(5), although the pre-
diction are less accurate, is a comparison of the GTV (Gross Tumor Volume) contoured
by a radiation therapist and the one computed by NEMOSIS(5). A Dice (or Sorensen)
index, which evaluates the similarities between two sets through a value ranging from 0
and 1 (this latter value means a perfect matching), of 0.80 was computed between these
two volumes. Figure 1.8 shows tumor contours over one slice from the three patients for
the 30% phase.
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More recently, a customized 4D numerical phantom representing the organ contours
based on a new adaptation of NEMOSIS has been explored [25]. Therefore, in order
to apply NEMOSIS to anthropomorphic phantoms several adjustments have been made.
First, an increase of the data set through the addition of both new patients and the overall
lung contours for some of them. Thus, the data set consists of 37, 160 points for 15 pa-
tients over 10 phases, comprising of 4, 680 anatomical feature points and 32, 480 contour
points. Second, a modification of the inputs of the neural network to have a better cus-
tomization by taking into account two parameters giving an approximation of the real
pulmonary volume by a cylinder. This new version of NEMOSIS has thus 7 inputs and is
denoted thereafter by NEMOSIS(7).

After training with data points belonging to 12 patients, NEMOSIS(7) gives for the re-
maining 3 patients a Dice index greater than 0.93 with 4D-CT during a respiratory cycle.
From a neural network topology point of view, the incremental learning process has pro-
duced a hidden layer of 20 neurons. Figure 1.9 presents the breathing motion produced
by NEMOSIS(7) for the 185 cm phantom (female phantom from IRSN). The figure dis-
plays the phantom at five respiratory phases: 10%, 30%, 50%, 70%, and 90%. A color
code highlights the amplitude of a point’s motion, from its current position to its position
in the next phase, and the initial lung contour at phase 0% is plotted in gray line for each
phase to render the global motion. Hence, we can see that the lungs mainly move in the
Superior-Inferior (SI) axis in accordance with the reality. Overall, NEMOSIS(7) seems to
predict the maximum exhalation slightly earlier than in reality and is still limited by the
small data set which is not representative enough.

1.5/ CONCLUSION

A challenging problem in lung cancer radiation therapy is the management of respira-
tory motion, since breathing motion is a crucial problem for radiation therapy treatment of
many tumors. To address this problem, we have investigated an approach allowing a cus-
tomized simulation of lung motions using multilayer perceptron neural networks. The idea
is thus to learn the lung motion using some patient data in order to predict the breath-
ing of unknown patients. To begin, before trying to simulate the lung motion, we have
used neural networks to enlarge the initial limited and noisy data set obtained by plot-
ting anatomical feature points in 4D-CT scans. Then, we have designed a first version
of the NEural NEtwork MOtion SImulation System (NEMOSIS) to reproduce for normal
tissues the movements included in the training domain as realistically as possible. The
domain does not cover the whole lung due to the initial limited data set. A second ver-
sion, better suited to a potential use in clinical routine, needing only the coordinates of
anatomical feature points in the first respiratory phase has been proposed. This latter
version, in which NEMOSIS has less inputs, requires thus only data provided by a single
3D-CT scan and no more by a 4D-CT one. Despite less precise predictions, this second
version allows to simulate the evolution of tumors contours which, in comparison with the
contours manually plotted by a radiation therapist, have a Dice index stating a minimum
correspondence of 0.80. More recently, promising results have been obtained with a third
version of NEMOSIS for a customized 4D numerical phantom representing the lung con-
tours. The resulting lung model has a Dice index of 0.93 with the 4D-CT scan defining a
respiratory cycle.
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(a) Slice from patient 1. (b) Zoom on the tumor from patient 1.

(c) Slice from patient 2. (d) Zoom on the tumor from patient 2.

(e) Slice from patient 3. (f) Zoom on the tumor from patient 3.

Figure 1.8: Tumor contours on one slice from three patients. In gray the contours given
by the radiation therapist and in white by NEMOSIS(5).
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Figure 1.9: Simulation of the lung motion using NEMOSIS(7) on the 185 cm phantom.



2
ACTIVE MEMS-BASED FLOW

CONTROL

Since 2012 the FEMTO-ST Institute consists of seven research departements, among
which the DISC department is the last one to have been created. This latter is issued
from the including of the former Computer Science Laboratory. To support this integra-
tion and give a scientific consistency to it, collaborative researches with other depart-
ments integrating transversal competencies have been encouraged. Therefore, with two
colleagues of the AND team, Karine Deschinkel and Jean-François Couchot, we have
started in 2010 a collaboration with members of the THERMIE team of the ENERGY de-
partment. A research topic of the THERMIE team is the study of complex flows such as
hydrodynamic flows in presence of ultrasounds or supersonic jets. The purpose of the
collaboration was thus to assess the ability of the multilayer perceptron neural network
to give a relevant modelling of the airflow evolution and then to study the application of
Micro-Electro-Mechanical Systems (MEMS) for aerodynamical active flow control. First
investigations were supported by two Master of Science internships, one in each team.

Various research works have studied this problem, meanwhile controlling such MEMS-
based systems remains a challenge. Let us notice that the choice of an active control
using MEMS is further motivated by the fact that one of the scientific aims of another de-
partment of FEMTO-ST, the MN2S department, is precisely the design and construction
of multiphysics micro and nanosystems. Several control approaches for time varying sys-
tems exist, many of them use a process model representing the dynamic behavior of the
process to be controlled. Our research work, which was first presented in a workshop [26]
and later published in a issue of selected papers from it in the Mechatronics international
journal [27], is such a approach. Indeed, after having established the suitability of a multi-
layer perceptron to predict the force corresponding to the flow induced by the MEMS, we
have optimized the flow w.r.t a numerical criterion. We have considered a dynamic flow
over a backward facing step (a rough model of the back of a car) where MEMS actuators
velocities are adjusted to maximize the pressure applied on the step surface.

The first step of the work was to set up a database thanks to computational fluid dynamics
simulations using a model resulting from the Master of Science internship in physics
supervised by the colleagues of the THERMIE team. Then, two approaches to find a
multilayer perceptron network topology giving suitable predictions have been investigated:
one that uses a trial and error process and another that dynamically builds the single
hidden layer. Finally, a dynamic control of the flow by changing the MEMS configuration,
leading to promising results, is explored.

21
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Figure 2.1: Image from an Autodesk tutorial displaying flow lines over a car.

The remainder of this chapter, which is a short version of the journal paper [27], is com-
posed of the following sections. In Section 2.1 active MEMS-based airflow control is
discussed, in particular existing works. Section 2.2 describes precisely the considered
dynamic flow and the corresponding computational fluid dynamic model. The next sec-
tion is devoted to the design of a multilayer perceptron for the prediction task, the dynamic
building and training approach gives the better results. Finally, before concluding, we pro-
pose a control strategy that exploits the process model provided by the MLP.

2.1/ INTRODUCTION

The active control of turbulent flows for drag reduction in order to improve the aerody-
namic performance of moving objects, such as an aircraft or a car, has received a lot
of attention. This interest comes from several important potential benefits for economy
and environment of such a control. Indeed, it would allow a better maneuverability, an
increasing of the range or payload capability, and improved environmental compliance.
For example, an integrated flow control system in a car would permit to control the mas-
sive recirculation zone which can be observed behind it, as shown in Figure 2.1, and thus
reduce the noise and pollutants emission.

Among the various microsystems that can be used to do active fluid control, MEMS [28]
are an interesting solution due to their properties: small size, low power consumption and
cost, and real-time control. In fact, with this technology, a fluid flow is controlled by contin-
uously adjusting MEMS actuators based on some information given by MEMS sensors.
Moreover, one of the most likely futuristic vision of active control consists of large sets
of interacting MEMS flow sensors and actuators built on aerodynamic surfaces. A prac-
tical implementation of a set of pulsed air-jet actuators, using a rough control approach
by simply switching them on at high speeds, has been done on a Citroen C-SportLounge
concept car in 2005. Therefore, this vehicle had an virtual airfoil on the tail using 40 MEMS
actuators producing pulsed microjets, supposed to improve the vehicle’s drag and stability
at high speeds. Figure 2.2 describes in the case of an aircraft other possible approaches
to perform active airflow control than through actuators producing modulated pulsed air-
jet, namely vibrating surfaces and asperities on the leading edge of the wing.
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Figure 2.2: Different kinds of MEMS allowing to control the airflow on the upper part of an
aircraft wing.

At the present time, the practical control of a turbulent flow with MEMS is a challenging
scientific problem in fluid mechanics. Furthermore, when designing a control method one
must not only focus on the performance, but must also keep in mind several requirements
that have to be addressed: scalability, robustness, and reliability. To build a closed-loop
flow control system two components have to be designed: a model that captures the
actuation effects on the flow and a controller.

Fluid models are well described through Navier-Stokes equations, which are highly non-
linear partial differential equations, therefore a nonlinear model is needed. This kind of
equations is usually solved thanks to computational fluid dynamics (CFD) tools like FLU-
ENT [29]. Although state of the art CFD tools can predict what will happen, as they
handle a huge number of data in an iterative process a prohibitive time is usually re-
quired to compute the future forced flow. Thus, they are irrelevant for real-time active
control of turbulent flows. Worst, they cannot be applied in a context where inflows ve-
locity is always changing. Reduced-order models can be broadly categorized into three
classes [30]: physical, mathematical, and data-fitting methods. In the first model category
some physical processes are neglected, in the second one the flow field representation
is changed to a more convenient one, whereas in the latter category the model is con-
structed in order to fit data resulting from experiment or numerical simulation. For the
considered control problem, the chosen model should offer the best balance between
accuracy and efficiency.

An adaptive active closed-loop separation control on a rounded step has been presented
by Pamart et al. in [31]. They showed that it is possible to automatically control the recir-
culation bubble using a synthetic jet frequency effect and measures provided by a unique
wall pressure sensor. Their control approach combines a nonlinear polynomial NARX
black-box model, which is obtained through unsteady RANS computations (a Reynolds-
averaged Navier-Stokes model), and an improved extremum-seeking algorithm. We con-
sider a similar context: the control of a turbulent wall bounded flow over a backward facing
step. We first focus on the identification of a nonlinear model that can predict the forced
flow. More precisely, our objective is to show the suitability of a multilayer perceptron neu-
ral network, a data-fitting approach, to play the role of process model. Later, we show that
this neural network might be easily used to provide a convenient active fluid control. Let
us remark that in comparison with [31], in our case study we take into account multiple
MEMS actuators producing pulsed microjets [32].
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Figure 2.3: Backward facing step geometry and nonuniform 2D mesh (a), and MEMS
microjet actuators location around the step corner (b).

2.2/ PROBLEM SPECIFICATION AND COMPUTATIONAL FLUID DY-
NAMIC MODEL

We focus on the dynamic flow over a static step, considering an airflow in the left-right
direction as a case in hand that may approximate a car moving in the right-left direction.

The geometry specification of the flow is displayed in Figure 2.3(a). O, x, and y represent,
respectively, the origin of the coordinate system, the longitudinal, and vertical directions.
This backward facing step is of height h = 0.288 m and l = 0.5 m long. The upstream
section has a height H of 0.712 m and the longitudinal length L of the downstream section
is equal to 2.5 m. Finally, the flow is initialized at atmospheric pressure with a temperature
of 300 K, which corresponds to a classical ambient temperature.

Five MEMS microjet actuators are placed on the upper part of the step. Each actuator
has a slot width of 500 µm and is supposed to produce, when activated, a microjet with
a velocity (expressed in m.s−1) that takes discrete values in {0, 33, 66, 99}. Figure 2.3(b),
which is a zoom around the step corner, shows how the MEMS actuators are placed.
The first one is placed on the step corner, the second is 10 mm away from the corner,
while the last three actuators are respectively 30 mm, 50 mm, and 70 mm from the corner.
Notice that each air microjet is always oriented in the bottom-up direction.
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Figures 2.3(a) and 2.3(b) also highlight the computational fluid dynamics grid-mesh used
to perform the numerical simulations with the CFD code FLUENT. We chose a nonuni-
form mesh in both longitudinal and vertical directions. The grid is coarser before the
step, refined close to the step walls, and the finest near the actuators position. This
grid-mesh, composed of more than 150, 000 cells, offers a good compromise between the
computation time for one iteration and the accuracy of the simulation. The average com-
putation time to complete a simulation carried out on a regular Linux workstation with an
AMD Athlon(tm) 64 X2 dual core processor 4000 + running at 2.1 GHz is about 5 minutes.
Note that we made the following assumptions for the boundary conditions. At the inlet, a
uniform velocity profile with an inflow velocity (expressed in m.s−1) that again takes dis-
crete values in the set {30, 35, 40}. In addition, the outlet outflow boundary conditions are
used and wall functions at the lower wall. At an actuator location, the boundary layer is
similar to the inlet one when activated and to the lower wall layer otherwise.

Intuitively, reducing the vacuum that may appear along the down step may be seen as
an application of this work. Then, among the results returned by FLUENT, we focus on
pressure data for this step face. However, since pressure is the amount of force per
unit area, dealing with pressure is memory consuming: for each configuration there are
as many pressure data than there are grid points on the down step, i.e. 244 results.
For each configuration, we rather aggregate results in a force obtained as the integral of
pressure over the step surface. This force is numerically computed thanks to the classical
trapezoidal rule. The neural network presented in the next section aims at approximating
the calculus of this force.

2.3/ PREDICTING THE FLOW EVOLUTION USING A MULTILAYER

PERCEPTRON NEURAL NETWORK

To predict the forced flow resulting from an actuation configuration a nonlinear process
model is required. Hence, we search a nonlinear mapping between inputs defining the
current flow and an actuation configuration, and outputs describing the flow evolution.

2.3.1/ A FIRST NETWORK DESIGN

2.3.1.1/ NETWORK TOPOLOGY AND IMPLEMENTATION

The first objective is to have a neural network able to model the resulting flow for various
values of boundary velocity in [30, 40] (m.s−1) and for any configurations of MEMS actua-
tors in {0, 33, 66, 99}5. Practically, that means that the network has for input a couple (C, v),
where C describes how the actuators are set and v defines the boundary inflow velocity.
In fact, C is a vector (c0, c1, c2, c3, c4) whose components represent the velocity of a mi-
crojet produced by an injector taking discrete values in {0, 33, 66, 99} (m.s−1), such that the
larger a component index, the closer the corresponding actuator to the step angle. Thus,
at a first glance, the neural network would have 6 inputs that produce a single output:
the resulting force f (C, v) expressed by the integral of pressure over the backward step
surface. However, in order to improve the neural network performances, more precisely
its ability to deal with nonlinear relationships that represent very sharp variations and to
have a faster training, we decided to change the structure of the inputs for the Higher-
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order Processing Unit (HPU) one [33]. The principle of this latter structure is to artificially
increase the number of inputs by adding polynomial combinations of the initial inputs up
to a given degree, called the order of the network.

The MLP is composed of a single hidden layer of sigmoidal neurons and linear output
ones, a classical case. It is trained through supervised learning by feeding it with data
obtained from the FLUENT simulation, using as optimization algorithm the L-BFGS al-
gorithm like in the work presented in the previous chapter. To address the overfitting
problem, we retained the popular holdout validation. As we consider a case study of
5 actuators, each one producing a microjet having a velocity value chosen among 4 val-
ues, and 3 different inflow velocities v ∈ {30, 35, 40} (m.s−1), the data set is composed of
45 × 3 = 3, 072 samples. These data samples are then randomly distributed over the
training, validation, and testing sets. The random sampling is performed such that the
cardinalities of these sets are, respectively, 65%, 10%, and 25% of the whole data set. To
find a suitable number of hidden neurons, in a first step we used a trial and error process.

2.3.1.2/ RESULTS

Different single hidden layer MLPs are considered. They differ from each other in number
of hidden neurons: 15, 20, 25, and 30 neurons networks are studied. Some preliminaries
experiments have also shown that the best results are gained with HPU neural networks
of order 3. Thus, this structure, which replaces the 6 initial inputs with 83 ones, has been
retained. Despite the large increase in the number of synaptic weights, this approach
allows to improve the results. To control the training process, different maximum number
of training epochs are used: 500, 750, and 1000 epochs.

The accuracy of the predictions is assessed using two statistical measures on the predic-
tions obtained for the data belonging to the testing set. First, the Coefficient of Variation
of the Root Mean Squared Error (CVRMSE) expressed by:

%CVRMSE =
100
ok
·

√∑N
k=1 (ok − pk)2

N
, (2.1)

where ok is the observed output of the k−th input-output test pair, pk the corresponding
prediction, ok the mean value of the observed values, and N the testing set cardinality.
Second, the coefficient of determination R2, mostly defined as follows:

R2 = 1 −
∑N

k=1 (ok − pk)2∑N
k=1 (ok − ok)2 . (2.2)

These statistics give a fair estimation of the ability of a MLP to reflect the variance of the
data and how well it will predict the output value. The closer the CVRMSE to 0 and R2 to 1,
the better the neural network model. While the CVRMSE aims at describing if we have a
good model fit by measuring the residuals relative to the predicted value, the coefficient
of determination is indicative of the level of explained variability in the data set.

Table 2.1 presents for the different training setups the mean values of CVRMSE and
R2. These ones are computed using each time 20 trainings with random sets, synaptic
weights, and biases initialization. As one can see, the different neural networks offer very
similar performances. In fact, the closeness of the two statistical measures for the four
network topologies, whatever the maximum number of epochs, can mainly by explained
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Table 2.1: Performances of the different networks for a testing set of 769 data samples.
Topology 6 initial / 83 HPU inputs and 1 output

Hidden neurons Epochs %CVRMSE R2

15
500 10.26 0.9475
750 10.21 0.9480

1000 10.23 0.9477

20
500 10.20 0.9481
750 10.14 0.9487

1000 10.15 0.9486

25
500 10.31 0.9469
750 10.28 0.9473

1000 10.26 0.9475

30
500 10.25 0.9476
750 10.20 0.9480

1000 10.20 0.9481

by the HPU structure. The better multilayer perceptron has 20 sigmoidal neurons on its
hidden layer and was trained during 750 epochs. Let us notice that the lowest validation
error was observed in that case after 579 training epochs. In comparison, a MLP for
simple nonlinear regression (with a single hidden neuron and no HPU structure) has a
CVRMSE of 23.99%, which is more than twice the coefficient value of any network, and
means that a simple nonlinear regression model is not relevant.

Figures 2.4(a) and 2.4(b) further illustrate the quality of the predictions given by the cho-
sen MLP. The first figure plots the observations and predicted values for the whole test-
ing set, while the second one is a zoom on data samples having an index in the range
500 to 700. This positive point of view on the prediction performance of the neural net-
work is further reinforced by the following figures: on the one hand, Figure 2.5(a) presents
the absolute error obtained for each of the 769 test data samples; on the other hand
Figure 2.5(b) is a view of the corresponding error distribution. It can be seen that the
network gives relevant predictions and the error distribution histogram follows a normal
distribution. More precisely, the errors are normally distributed with a mean of 0.236 and
a standard deviation of 3.428, which means, according to the three-sigma rule, that the
prediction error lies between −6.62 and 7.092 for 95% of the test data samples. Therefore,
we can say that the multilayer perceptron neural network can model the flow evolution
with a very good accuracy.

2.3.2/ AN IMPROVED NETWORK DESIGN

A major question that must be addressed is the size of the hidden layer. A too large layer
will need many epochs to be well-trained, which is not the case with a small network, but
a too small network may be unable to learn the relationships, or with a long training time
will get trapped into overfitting. Therefore, the optimal number of hidden neurons is the
one which offers the better trade-off between the computation time needed to fulfill the
training process and networks’ generalization ability.

In the previous section, we have used a classical trial and error process to find a suitable
number of hidden neurons. Although, thanks to this method, we have shown that a hid-
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Figure 2.4: Observed and predicted values for the test data samples (a) and zoom on the
samples with an index going from 500 up to 700 (b).
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Figure 2.5: Absolute error values (a) and error distribution histogram (b).

den layer of 20 neurons allows to obtain relevant predictions it has a major drawback: the
waste of time due to the training of many different MLPs. An interesting alternative con-
sists in a dynamic building and training of the network. Thus, the purpose of this section
is first to describe the principle of this kind of approaches, and then to study its relevance
in our context. Let us notice that dynamic neural network construction approaches have
been successfully applied in various domains, like the prediction of dose deposit during
external radiotherapy treatments [23], or the simulation of respiratory lung motion [2, 3,
4] described in the previous chapter.

2.3.2.1/ DYNAMIC BUILDING AND TRAINING

Many dynamic approaches have been proposed to simultaneously define an optimal net-
work topology and train it. The background idea is to start with few hidden neurons and
then to successively add new neurons, one after another, as long as the overfitting prob-
lem does not appear. The proposed algorithms differ from each others in the way the new
neurons are added and the training is performed. In [34] when a new neuron is added
only its synaptic weights and bias, which are initialized to zero, are updated by the training
process, while in [23] it is the weights and biases of the whole network. Usually, dynamic
methods construct networks with less hidden neurons than a trial and error process.
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A dynamic building method similar to the incremental approach proposed in [23] is con-
sidered. Such an approach has been already used in the work on the simulation of lung
motion, but the addition of a new hidden neuron was controlled in a different way. Let us
give some details on the algorithm and particularly on the approach used to stop it.

The algorithm starts with a MLP that has few neurons on a single hidden layer, next it
trains the network during a fixed number of iterations, then it adds one hidden neuron and
performs the training again, and so on until the addition of a new neuron does not produce
more accurate predictions, or when the hidden layer reaches a maximum size (typically
30 neurons). In the first case, the retained network will be the one obtained previously,
with one less neuron in the hidden layer. We initialize the parameters of a new hidden
neuron to zero. After addition of a neuron, the training of the new network is stopped after
a fixed number of iterations, and also when a criterion defined in [35] is satisfied.

This stopping criterion uses the generalization loss at an epoch and the training progress
measured during a sequence of consecutive epochs: stop as soon as the quotient of
generalization loss and progress is a above a fixed value α. Obviously, high generalization
loss indicates overfitting, i.e., a practical reason to stop training. However, a fast training
progress (training error decrease) may reduce the generalization loss. Indeed, as noticed
by the author of [35], overfitting begins when the training error decreases slowly. The
length of the sequence used to estimate the training progress (10 epochs) and the value
of α (7.5) were chosen after some preliminary experiments, and thus may not be optimal.

2.3.2.2/ RESULTS

The same data set and random sampling are used to build the training, validation, and
testing sets. Again, we control the training process at beginning and after addition of a
new hidden neuron using various numbers of training epochs: 50, 100, 150, 200, and
250 epochs. For example, if the number of training epochs is 50 and two hidden neurons
are finally added, this means that the maximum number of training epochs will be 50 + 2×
50 + 50 = 200 epochs. Indeed, 50 epochs are used to train the starting network, followed
by 50 epochs for each added neuron, and finally 50 epochs are used to train the network
with a third new neuron that will not be retained. This maximum number of training epochs
can be compared to the one used for the networks presented in Subsection 2.3.1.2.

Table 2.2 presents the performances obtained for different starting neural networks: the
initial hidden layer size ranges from one to 15 neurons. For each training setup are
given the mean values of the final number of hidden neurons, CVRMSE and R2. Like
in Table 2.1, these values are computed considering 20 trainings. The first observation
which can be made is that for almost each starting hidden layer size, a final network giving
predictions with better or similar accuracy than that of the previously retained network
of 20 hidden neurons is obtained (shown in Table 2.1). In particular, networks starting
with one and 10 hidden neurons provide the most accurate final networks: a network
composed of 7 neurons, neurons which are trained successively during 100 epochs, and
one of 14 neurons, each new added neuron being trained during 200 epochs. Overall, in
average the better networks constructed by the dynamic approach consist of 7 neurons
and have required 100+6×100+100 = 800 epochs for the whole process. These networks
are far more smaller than the best one found through trial and error, which has almost
three times much more hidden neurons. Such a network will be used to predict the
resulting force along the down face of the backward facing step when optimizing the flow.
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Table 2.2: Performances of different dynamically build and trained networks for a testing
set of 769 data samples.

Hidden 6 initial / 83 HPU inputs and 1 output
Start neurons Epochs Final neurons %CVRMSE R2

1

50 8 10.14 0.9486
100 7 10.05 0.9495
150 5 10.64 0.9086
200 4 10.61 0.9192
250 4 10.65 0.9429

5

50 11 10.42 0.9457
100 10 10.14 0.9487
150 9 10.17 0.9484
200 8 10.19 0.9482
250 8 10.14 0.9487

10

50 18 10.39 0.9462
100 15 10.20 0.9482
150 14 10.15 0.9487
200 14 10.11 0.9489
250 13 10.12 0.9489

15

50 22 10.60 0.9437
100 20 10.27 0.9474
150 19 10.19 0.9482
200 19 10.17 0.9484
250 19 10.19 0.9221

Another observation concerns the number of epochs needed to train a network after
addition of a neuron. It can be seen that the most suitable number increases with the size
of the starting hidden layer. Indeed, the larger the neural network, the larger the number
of epochs needed to properly train it.

2.4/ OPTIMIZING THE FLOW WITH A MODEL PREDICTIVE CONTROL

2.4.1/ MODEL OF CONTROL

The objective is to adjust in real time the microjet velocity of the different injectors in order
to maximize the force f (C, v), which is induced by the downstream recirculation area, that
depends on the injectors configuration C and the boundary inflow velocity v. We suppose
that the boundary velocity varies over time and we try to change from one configuration
to another in minimum time to maintain a maximal force.

Ideally, the controller should make the MEMS actuators change instantaneously from the
current configuration C = (c0, . . . , c4) to the optimal one C∗(v). However, this is not really
practicable. Indeed, even if all the MEMS are simultaneously modified, this change takes
time δt. Let then v′ be the boundary velocity at time t + δt. The velocity v′ may be distinct
from v and thus C∗ (v′) is not necessarily equal to C∗(v). Therefore, we have decided
to restrict the way the MEMS configuration evolve by considering rather that the change
of configuration is done according to a neighborhood structure. The idea is to consider
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only changes in the shortest time and thus to enable only a transition from the current
configuration to a configuration that is only a little different. Let N(C) be the neighborhood
defined as follows:

N(C) =
{
C′ =

(
c′0, . . . , c

′
4

)
|
∣∣∣c′j − c j

∣∣∣ ≤ 33 and 0 ≤ j ≤ 4
}
. (2.3)

According to this definition, N(C) is composed of configurations C′ such that the velocity
difference

∣∣∣∣c′j − c j

∣∣∣∣ for each injector j ∈ {0, . . . , 4} will be at most 33 m.s−1. Then, for any
given configuration C, and any boundary inflow velocity v, we determine the configuration
C′ ∈ N(C) that maximizes the force f behind the backward-facing step:

C̃ = argmaxC′∈N(C) f (C′, v) (2.4)

However, it is unlikely that the inflow velocity remains unchanged and therefore Equa-
tion (2.4) must take into account the possible evolution of the velocity. Indeed, given
a sequence of velocities vi measured at time ti = i × δt, the force applied behind the
backward-facing step when the boundary inflow velocity is vi results from the MEMS con-
figuration optimized for the velocity at time ti−1: fi = f

(
C̃ (vi−1) , vi

)
, and obviously the

more the velocity changes, the more C̃ (vi−1) may be different from the optimal configu-
ration C̃ (vi). Therefore, we should compute f (C′, v′) for all the C′ in N(C) and for all the
velocities v′ that are close to vi−1.

For efficiency reasons, the set of considered velocities is obtained using the current veloc-
ity and the current acceleration. Formally, let ai−1 be an approximation of the acceleration
at time ti−1, i.e., ai−1 = vi−1 − vi−2. When the acceleration is positive (ai−1 ≥ 0), a set of
velocities {w0,w1,w2, . . . ,wk} such that w0 < w1 < w2 < . . . < wk is computed as follows.
The maximal value wk is defined as the minimum between the maximal value of the ve-
locity (e.g., 40 in our case) and vi−1 + ai−1. Let δi−1 = (wk − vi−1)/k. Then let w0 and w j,
1 ≤ j ≤ k − 1, be respectively defined by w0 = vi−1 − δi−1 and w j = vi−1 + j × δi−1. Note that
[w0,wk] contains vi−1 which is located on the left part of this interval. A similar reasoning
is applied to have w0 > w1 > w2 > . . . > wk when the acceleration is negative.

We are then left to compute C̃ (vi−1) that takes into account these ranges of velocity. The
configuration C̃ (vi−1) is then defined by:

C̃ (vi−1) = argmaxC′∈N(C)
1

k + 1

k∑
j=0

f (C′,w j) (2.5)

In other words, for any configuration C′ in the neighborhood of C, we compute the mean of
f (C′, v) where v belongs in {w0, . . . ,wk}, using suitable approximations of f (C′,w j) provided
by the multilayer perceptron composed of seven hidden neurons.

2.4.2/ VALIDATION

The proposed model of control has been evaluated on scenarios developed as follows.
A scenario is composed of a random initial configuration C0 and a sequence of n real
numbers randomly picked in the range [30, 40], each one representing a velocity vi mea-
sured at time ti = i × δt. Due to physical constraints, if vi+1 is greater than vi then we have
vi+1 − vi < ka, while conversely, if vi+1 is lower than vi then we have vi − vi+1 < kd, where ka
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(resp. kd) stands for the acceleration (resp. deceleration) bound. Intuitively, it means that
between two measures, the system cannot accelerate more than ka m.s−1 and cannot
decelerate more than kd m.s−1. ka and kd were respectively set to 2.5 and 5.0 m.s−1.

The relevance of the proposal is estimated by comparing two sums:

σ =

n−1∑
i=1

fi =

n−1∑
i=1

f
(
C̃ (vi−1) , vi

)
, (2.6)

σ =

n−1∑
i=1

fi =

n−1∑
i=1

f (C0, vi) . (2.7)

The former is the sum of the forces produced by updating the MEMS configuration thanks
to the model of control, while the latter is observed when the configuration remains un-
changed and equal to C0.

Based on 20 scenarios randomly built such that each sequence of velocities had a length
of 10 values, we can say that the proposed control allows to produce forces which are al-
ways positive, whereas without it negative forces are systematically observed. A negative
force means an air resistance (drag) that slows down the car. More precisely, the average
value of σ is −328 N, while the one obtained for σ is 201 N, i.e., an increase of 529 N. It
clearly shows that the optimization process allows an increase of the force behind the
backward-facing step. From computational time point of view, on a typical personal com-
puter (processor Intel Core i5 running at 2.50 GHz and 6 GB RAM) about 7.8 seconds
are required in average to process C̃(v) defined in Equation (2.5) on a neighborhood N(C)
whose average cardinality is 98.

2.5/ CONCLUSION

Active air flow control using MEMS actuation remains a scientific challenge due to several
difficulties to overcome, among which a key obstacle is the availability of a prediction
of the flow evolution that is both fast and accurate. We have shown that a multilayer
perceptron with higher-order input correlations is able to provide, after a proper training,
convenient predictions of the force behind a backward-facing step with 5 MEMS microjet
actuators. Using such a neural network to predict the evolution of the air flow, an approach
allowing to continuously optimize the flow in order to maximize the force generated on
the step has been proposed. It uses a neighborhood structure defined on the set of
all possible configurations of actuators to control how the actuators evolve. Only slight
changes are allowed during the transition from a configuration to another one. Thus,
at every instant t we search for the best neighboring configuration. The experiments
performed showed that with this approach the cumulative force obtained during a period
of time is more appropriate.

Let us emphasize that this work is rather a proof of concept for active air flow control,
since the considered problem is a rough approximation of a real moving vehicle. More-
over, as further investigations are needed to get closer to a potential real implementation
producing relevant benefits, active air flow control is still a hot topic which is receiving an
increasing attention. The scalability is particularly a key issue to be overcome, because
in real applications, tens, or even hundreds of MEMS actuators would be used, and thus
a more large number of actuators has to be controlled.



3
CHAOTIC NEURAL NETWORKS AND

PREDICTABILITY OF CHAOTIC
DYNAMICS

Obviously, the possibility of a deliberate control like the proposed approach in the previous
chapter is conditional upon the possibility of prediction. For forced convection problems
such as the considered airflow one, CFD tools can provide accurate predictions in terms
of fluid velocity and pressures. Indeed, even if the airflow is turbulent, having a Reynolds
number above 350 K, and thus characterized by chaotic changes in pressure and flow
velocity, CFD allows to extract time-averaged and large-scale quantities useful for engi-
neering purposes. In that case CFD can simulate accurately the real world, although the
computational cost might be prohibitive according to the geometry and physics.

The inner chaotic behavior of the airflow evolution could be overcome, but this may not
be always possible. Furthermore, various natural processes exhibit a chaotic behavior
and deterministic chaos is sometimes demanded in some applications. Consequently,
the study of nonlinear dynamical systems, and particularly chaotic ones that have a very
sensitive dependence on initial conditions, has been the subject of many research works.
The design of chaotic neural networks, which are such systems, has received a great
deal of attention in various fields of application. However, the resulting neural networks
are usually claimed to be chaotic without any rigorous mathematical proof.

To fill this lack, the chaotic iterations scheme devised by Christophe Guyeux during its
PhD thesis [36], a mathematical theoretical framework satisfying the Devaney’s [37] defi-
nition of chaos, has been applied to the modelling of chaotic neural networks. More pre-
cisely, we have cooperated with Christophe Guyeux, Jacques Bahi, and Jean-François
Couchot on this topic, to establish an equivalence between chaotic iterations in the sense
of Devaney and a class of recurrent multilayer perceptrons. In [38] we have proposed
an approach for building a global recurrent neural network whose iterations are chaotic.
This work has been deepened in [39] by adding a method to check whether some partic-
ular neural networks are chaotic or not and an investigation of the predictability of such
dynamical systems using classical feedforward multilayer perceptrons.

In particular, in [40], one of the first work on the bioinformatics topic in the AND team, it
has been proved that the protein folding in the 2D Hydrophobic-Hydrophilic (HP) square
lattice model is chaotic according to Devaney by modelling the conformation process with
chaotic iterations. This process has thus a huge sensitivity to initial conditions and it
seems very difficult, in this 2D model, to predict with a good accuracy the structure of a

33



34 CHAPTER 3. CHAOS AND NEURAL NETWORKS

protein by exploiting the knowledge of solved structures from similar proteins. Let us recall
that the 2D HP square lattice model is a popular model with low resolution that focuses
only on the hydrophobicity, by separating the amino acids into two sets: hydrophobic (H)
and hydrophilic (or polar P) [41], and which has been used several times for protein folding
prediction. The experiments presented in [40], using multilayer perceptrons to fulfill the
prediction task, give results in accordance with the above statement. They show that pre-
dicting the structure of the protein molecule given only the amino acid sequence as input
is difficult. Note that the chaotic behavior of the 2D model means that good predictions
might be illusory, but not that the underlying biological process is itself a chaotic process.

This chapter sums up the results obtained in the different papers. After an introduction
discussing some related works in Section 3.1 and a presentation of the basics of chaotic
iterations and Devaney’s chaos in the next one, Section 3.3 formally describes how to
build a neural network that operates chaotically. Section 3.4 deals with the dual case of
checking whether an existing neural network is chaotic or not, while the predictability of
protein folding in the 2D HP square lattice model using multilayer perceptrons is discussed
in Section 3.5. In this latter, the first subsection shows that the 2D model is a chaotic
dynamical system as defined by Devaney, while the second one focuses on the structure
prediction with MLP networks of very simple proteins.

3.1/ INTRODUCTION

Since a while neuroscientists discuss the existence of chaos in the brain. In the con-
text of artificial neural networks, this interest has given raise to various works studying
the modeling of chaos in neurons. The chaotic neuron model designed by Aihara et al.
[42] is particularly used to build chaotic neural networks. For example, in [43] is pro-
posed a feedback neural network architecture which consists of two layers (apart from
the input layer) with one of them composed of chaotic neurons. In their experiments, the
authors showed that without any input sequence the activation of each chaotic neuron
results in a positive average Lyapunov exponent, which means a true chaotic behavior.
When an input sequence is given iteratively to the network, the chaotic neurons reach
stabilized periodic orbits with different periods, and thus potentially provide a recognition
state. Similarly, the same authors have introduced another model of chaotic neuron: the
nonlinear dynamic state (NDS) neuron, and used it to build a neural network which is able
to recognize learned stabilized periodic orbits identifying patterns [44].

Another field of research in which chaotic neural networks have received a lot of attention
is data security. In fact, chaotic cryptosystems are an appealing alternative to classical
ones due to properties such as sensitivity to initial conditions or topological transitivity.
Thus chaotic neural networks have been considered to build ciphering methods, hash
functions, digital watermarking schemes, pseudorandom number generators, etc. In [45]
such a cipher scheme based on the dynamics of Chua’s circuit is proposed. More pre-
cisely, a feedforward MLP with two hidden layers is built to learn about 1,500 input-output
vector pairs, where each pair is obtained from the three nonlinear ordinary differential
equations modeling the circuit. Hence, the proposed chaotic neural network is a net-
work trained to learn a true chaotic physical system. In the cipher scheme the neural
network plays the role of chaos generator with which the plain-text will be merged. Un-
trained neural networks have also been considered to define block ciphering [46] or hash
functions [47]. Sometimes, such as in [47], a neural network is claimed to be chaotic
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simply because it is built considering activation functions and initial conditions that are
both chaotic.

Unlike all these previous works, in this chapter a theoretical framework based on De-
vaney’s definition of chaos is introduced to show how to build a recurrent neural network
that is equivalent to a chaotic map.

3.2/ CHAOTIC ITERATIONS IN THE SENSE OF DEVANEY

In the sequel S n denotes the n−th term of a sequence S and Ei denotes the i−th compo-
nent of a vector E. f k = f ◦ ... ◦ f is for the k−th composition of a function f . Finally, the
following notation is used: ~1; N� = {1, 2, . . . ,N}.

3.2.1/ ASYNCHRONOUS ITERATIONS

Let us consider a system with a finite number N ∈ N∗ of elements (or cells), so that
each cell has a boolean state. A sequence of length N of boolean states of the cells
corresponds to a particular state of the system. A sequence whose elements belong to
~1; N� is called a strategy. The set of all strategies is denoted by S.

Definition 1: Chaotic iterations

The set B denoting {0, 1}, let f : BN −→ BN be a function and S ∈ S be a strategy.
The so-called chaotic iterations are defined by x0 ∈ BN and

∀n ∈ N∗,∀i ∈ ~1; N�, xn
i =

 xn−1
i if S n , i(
f (xn−1)

)
S n if S n = i.

In other words, at the n−th iteration, only the S n-th cell is “iterated ”. Note that in a more
general formulation, S n can be a subset of components and

(
f (xn−1)

)
S n can be replaced

by
(

f (xk)
)
S n , where k < n − 1, describing for example, delays transmission [48].

3.2.2/ DEVANEY’S CHAOTIC DYNAMICAL SYSTEMS

Consider a topological space (X, τ) and a continuous function f on X.

Definition 2: Topological transitivity

f is said to be topologically transitive if, for any pair of open sets U,V ⊂ X, there
exists k > 0 such that f k(U) ∩ V , ∅.

Definition 3: Periodic element (point)

An element (a point) x is a periodic element (point) for f of period n ∈ N∗, if
f n(x) = x.
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Definition 4: Regularity

f is said to be regular on (X, τ) if the set of periodic points for f is dense in X:
for any point x in X, any neighborhood of x contains at least one periodic point.

Definition 5: Chaotic function

f is said to be chaotic on (X, τ) if f is regular and topologically transitive.

The chaos property is strongly linked to the notion of “sensitivity”, defined on a metric
space (X, d) by:

Definition 6: Sensitivity

f has sensitive dependence on initial conditions if there exists δ > 0 such that,
for any x ∈ X and any neighborhood V of x, there exists y ∈ V and n > 0 such
that d ( f n(x), f n(y)) > δ.
δ is called the constant of sensitivity of f .

Indeed, Banks et al. have proved in [49] that when f is chaotic and (X, d) is a metric
space, then f has the property of sensitive dependence on initial conditions (this property
was formerly an element of the definition of chaos). To sum up, quoting Devaney in [37],
a chaotic dynamical system “is unpredictable because of the sensitive dependence on
initial conditions. It cannot be broken down or simplified into two subsystems which do
not interact because of topological transitivity. And in the midst of this random behavior,
we nevertheless have an element of regularity”. Fundamentally different behaviors are
consequently possible and occur in an unpredictable way.

3.2.3/ LINKING ASYNCHRONOUS ITERATIONS AND DEVANEY’S CHAOS

In this section we give outline proofs of the properties on which the study of chaotic neural
networks is based. The complete theoretical framework is detailed in [50].

Denote by ∆ the discrete boolean metric, ∆(x, y) = 0 ⇔ x = y. Given a function f :
BN −→ BN, define the function F f : ~1; N� ×BN −→ BN such that

F f (k, E) =
(
E j.∆(k, j) + f (E)k.∆(k, j)

)
j∈~1;N�

, (3.1)

where + and . are the boolean addition and product operations, x is for the negation of x.

Consider the phase space X = ~1; N�N ×BN and the map

G f (S , E) =
(
σ(S ), F f (i(S ), E)

)
(3.2)

where σ : (S n)n∈N ∈ S 7→ (S n+1)n∈N ∈ S is the shift function, and the initial function i is the
map which associates to a sequence its first term: i : (S n)n∈N ∈ S 7→ S 0 ∈ ~1; N�.

Thus chaotic iterations can be described by the following iterations [50]:{
X0 ∈ X

Xk+1 = G f (Xk).
(3.3)

Let us define a new distance between two points (S , E), (Š , Ě) ∈ X by:

d((S , E); (Š , Ě)) = de(E, Ě) + ds(S , Š ), (3.4)
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where

• de(E, Ě) =

N∑
k=1

∆(Ek, Ěk) ∈ ~0; N�,

• ds(S , Š ) =
9
N

∞∑
k=1

|S k − Š k|

10k ∈ [0; 1].

This new distance has been introduced in [50] to satisfy the following requirements. When
the number of different cells between two systems is increasing, then their distance
should increase too. In addition, if two systems present the same cells and their re-
spective strategies start with the same terms, then the distance between these two points
must be small because the evolution of the two systems will be the same for a while.
The distance presented above follows these recommendations. Indeed, if the floor value
bd(X,Y)c is equal to n, then the systems E, Ě differ in n cells. In addition, d(X,Y)− bd(X,Y)c
is a measure of the differences between strategies S and Š . More precisely, this floating
part is less than 10−k if and only if the first k terms of the two strategies are equal. More-
over, if the k−th digit is nonzero, then the k−th terms of the two strategies are different.

It is proven in [50], by using the sequential continuity, that the vectorial negation
f0(x1, . . . , xN) = (x1, . . . , xN) satisfies the following proposition:

Proposition 1:

G f0 is a continuous function on (X, d).

It is then checked, also in [50], that in the metric space (X, d), the vectorial negation fulfills
the three conditions for Devaney’s chaos: regularity, transitivity, and sensitivity. This has
led to the following result.

Proposition 2:

G f0 is a chaotic map on (X, d) in the sense of Devaney.

3.3/ CHAOTIC NEURAL NETWORKS ACCORDING TO DEVANEY

3.3.1/ NEURAL NETWORK DESIGN

Let us consider the vectorial negation function denoted by f0 : BN → BN and its associ-
ated map F f0 : ~1; N� × BN → BN. First, it is possible to define a MLP which recognizes
F f0 . That means, for all (k, x) ∈ ~1; N� × BN, the response of the output layer to the input
(k, x) is F f0(k, x). Second, the output layer can be connected to the input layer as it is
depicted in Figure 3.1, leading to a global recurrent neural network working as follows:

• At the initialization stage, the neural network receives a boolean vector x0 ∈ BN as
input state, and S 0 ∈ ~1; N� in its input integer channel i(). Thus, a new boolean
vector x1 = F f0(S 0, x0) ∈ BN, representing the new state of the dynamical system,
is computed by the neural network.
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• The state x1 is published as an output and sent back to the input layer, to act as
boolean state in the next iteration.

• At iteration number n + 1, the recurrent neural network receives the state xn ∈ BN

from its output layer and i (S n) ∈ ~1; N� from its input integer channel i(). It can thus
compute xn+1 = F f0(i (S n) , xn) ∈ BN, which will be the new output of the network.

If the initial state x0 ∈ BN is sent to the network with a sequence S ∈ ~1; N�N applied in the
input integer channel i(), then the sequence (xn)n∈N∗ of the outputs is exactly the same
than the sequence obtained from the following chaotic iterations: x0 ∈ BN and

∀n ∈ N∗,∀i ∈ ~1; N�, xn
i =

 xn−1
i if S n , i(
f0(xn−1)

)
S n if S n = i. (3.5)

From a mathematical viewpoint, the MLP with global recurrent connections defined in this
subsection and chaotic iterations recalled above have the same behavior. In particular,
given the same input vector

(
(S n)n∈N, x0

)
, they produce the same output vector (xn)n∈N∗ :

they are two equivalent reformulations of the iterations of G f0 in X. As a consequence, the
behavior of the proposed recurrent network faithfully reflects the behavior of G f0 which is
chaotic according to Devaney.

The approach proposed to build chaotic neural networks is not restricted to an ad hoc
function f0 : BN → BN, it can be generalized. Indeed, the function F f0 can be replaced by
any function F f : ~1; N� × BN → BN associated to a function f such that its chaotic map
G f is chaotic, as defined by Devaney. Alternative functions f for f0 can be easily identified
using the following theorem established by Christophe Guyeux during its PhD thesis:

Theorem 1:

Functions f : Bn → Bn such that G f is chaotic according to Devaney, are func-
tions such that the oriented graph of iterations Γ( f ), see Definition 7, is strongly
connected.
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Definition 7: Graph of iterations

In the oriented graph of iterations Γ( f ), vertices are boolean vectors of BN, and
there is an arc labeled i from x to x′ if and only if x′ = F f (i, x).

Since it is easy to check whether a graph is strongly connected, thanks to this theorem
we can discover new functions f : BN → BN such that the neural network associated to
G f behaves chaotically, as defined by Devaney. In [38], as illustrative examples, we have
given five functions among which three led to neural networks which behave chaotically.
An experimental investigation of the ability to learn two functions whose graph of iterations
are strongly connected and one for which it is not the case, considering neural networks
built as explained previously, is presented thereafter.

Let us introduce the two following functions:

f1(x1, x2, x3) = (x1, x2, x3) and f2(x1, x2, x3) = (x1, x1, x2).

It can easily be checked that these functions satisfy the hypothesis of Theorem 1, thus
their iterations are chaotic according to Devaney. Then when the neural network archi-
tecture defined previously learns to recognize F f1 or F f2 , it tries to learn these chaotic
iterations, that is, a chaotic behavior as defined by Devaney. On the contrary, the function

g(x1, x2, x3) = (x1, x2, x3)

is such that Γ(g) is not strongly connected. In this case, due to Theorem 1, the neural
network does not learn a chaotic process. We will now recall the study presented in [38]
of the training process of functions F f1 , F f2 , and Fg, that is to say, the ability to learn one
iteration of chaotic iterations.

3.3.2/ EXPERIMENTAL RESULTS

For each recurrent neural network we have considered architectures with one and two
hidden layers, with in the first case different numbers of hidden neurons. Thus we will
have different networks modeling the same iteration function. Only the size and number
of hidden layers may change, since the numbers of inputs and output neurons are fully
specified by the function. Each network has sigmoidal hidden neurons and linear output
neurons, and is trained like the MLPs considered in Chapters 1 and 2. The training is
performed until the learning error is lower than a chosen threshold value (10−2).

Table 3.1 gives for each considered neural network the mean number of epochs needed
to learn one iteration, and a success rate that reflects a successful training in less than
1000 epochs. Both values are computed considering 25 trainings with random weights
and biases initialization. These results highlight several points. First, the two hidden layer
structure seems to be quite inadequate to learn chaotic behaviors. Second, training net-
works so that they behave chaotically seems to be difficult for these simplistic functions
only iterated once, since they need in average more epochs to be correctly trained. How-
ever, the correctness of this point needs to be further investigated by using larger sets of
iteration functions.
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Table 3.1: Results of some iteration functions learning using different globally recurrent
neural networks.

Topology One hidden layer
8 neurons 10 neurons

Function Mean Success Mean Success
epoch rate epoch rate

f1 82.21 100% 73.44 100%
f2 76.88 100% 59.84 100%
g 36.24 100% 37.04 100%

Topology Two hidden layers: 8 and 4 neurons
Mean epoch number Success rate

f1 203.68 76%
f2 135.54 96%
g 72.56 100%

3.4/ HOW TO DETERMINE WHETHER A NEURAL NETWORK IS CHAOTIC OR NOT

Assume now that a neural network is already available and for which we want to determine
whether it is chaotic or not. Being able to perform such checking might be of great interest
to researchers when their work rely on neural networks said to be chaotic without any
rigorous mathematical proof. In the following we describe an approach for a particular
category of MLP, introduced in [39], but we think that this approach can be extended to a
large variety of neural networks.

The considered neural networks are multilayer perceptrons having an architecture with
two key characteristics. First, the input layer consists of l binary digits and one integer
value, while the output layer is a binary vector of l components. Second, each binary
output is connected to an input one such that both have the same index value. Moreover,
these recurrent neural networks are supposed to evolve in discrete time.

• To start such network evolution, the input layer is seeded with l bits denoted
(x0

1, . . . , x
0
l ) and an integer value S 0 from ~1; N�.

• At iteration n, the last output vector (xn
1, . . . , x

n
l ) becomes the input vector used to

compute the new output one (xn+1
1 , . . . , xn+1

l ), given a new input integer S n ∈ ~1; N�.

Neural networks having both architecture and evolution rule as defined above can then
be proven to be chaotic based on the following considerations. First, denote by F :
~1; l�×Bl → Bl the function which maps an input vector (s, x) = (s, (x1, . . . , xl)) ∈ ~1; l�×Bl

into a vector y = (y1, . . . , yl), where y is produced by the output layer of a neural network
receiving (s, x) as input vector. Second, let f : Bl → Bl be the function defined by:

f (x1, . . . , xl) = (F (1, (x1, . . . , xl)) , . . . , F (l, (x1, . . . , xl))) . (3.6)

Thus, ∀ j, 1 ≤ j ≤ l we have ( f (x1, . . . , xl)) j = F ( j, (x1, . . . , xl)). By seeding the neural
network with (x0

1, . . . , x
0
l ) and S from ~1; l�N, it will produce exactly the same outputs than

the chaotic iterations given by Equation (3.3) with initial configuration X0 = (S , x0) ∈ X
where X = ~1; l�N × Bl. That means that the iterations defined by G f model formally
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the evolution of a neural network which is a chaotic iterations-based recurrent multilayer
perceptron. Hence, according to Theorem 1, to check whether such a neural network
behaves chaotically consists simply to determine if the correspondig graph of iterations
Γ( f ) is strongly connected or not. Topological properties of chaotic neural networks, like
their convergence, have also been investigated in [39].

3.5/ PREDICTABILITY OF CHAOTIC DYNAMICS: AN EXAMPLE WITH

PROTEIN FOLDING

We have studied the suitability of feedforward multilayer perceptrons for predicting chaotic
and non-chaotic iterations in [39], motivated by the context of steganalysis techniques. In-
deed, these techniques, whose purpose is to automatically detect the presence of hidden
messages inside cover media, can rely on detectors like support vector machines, neural
networks, and Markov chains. Therefore, as to the best of our knowledge none of the
embedding schemes used to hide a message that have been steganalyzed are chaotic
according to Devaney’s definition of chaos, we wondered whether usual detectors and
more particularly neural networks are still able to give good results when dealing with
truly chaotic embedding schemes.

In this section, we will rather focus on protein folding which is one of the most interesting
challenges in computational biology. To study this folding, tools like neural networks and
genetic algorithms have received a lot of attention, mainly due to the NP completeness
of the folding process. The background idea that has given rise to the use of these
algorithms is obviously that the folding process is predictable. However, this important
assumption is disputable as chaotic properties of such a process have been highlighted
[51, 52]. For instance, in [51] the Lyapunov exponent of a folding process has been
experimentally computed, resulting in a positive exponent. In [40], we have evaluated the
topological behavior of a well-known dynamical system used for protein folding prediction
and the subsections thereafter present the following points of this evaluation: the first
subsection establishes mathematically that the 2D model is a chaotic dynamical system
as defined by Devaney, while the second discusses structure prediction of very simple
proteins with MLP networks.

3.5.1/ FOLDING PROCESS IN 2D MODEL IS CHAOTIC

3.5.1.1/ 2D HYDROPHOBIC-HYDROPHYLIC (HP) MODEL

• HP model

In the HP model, hydrophobic interactions are supposed to dominate protein fold-
ing. This model was formerly introduced by Dill, who considered in [41] that the
protein core freeing up energy is formed by hydrophobic amino acids, whereas hy-
drophilic amino acids tend to move in the outer surface due to their affinity with the
solvent (see Figure 3.2). In this model, a protein conformation is a “self-avoiding
walk (SAW)” on a 2D or 3D lattice such that its energy E, depending on topological
neighboring contacts between hydrophobic amino acids that are not contiguous in
the primary structure, is minimal. In other words, for an amino-acid sequence P of
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Figure 3.2: Hydrophilic-hydrophobic model (black squares are hydrophobic residues).

length N and for the set C(P) of all SAW conformations of P, the chosen conforma-
tion will be C∗ = min

{
E(C)

/
C ∈ C(P)

}
[53]. In that context and for a conformation C,

E(C) = −q where q is equal to the number of topological hydrophobic neighbors. For
example, E(c) = −5 in Figure 3.2.

• Protein encoding

Additionally to the direct coordinate presentation, at least two other isomorphic en-
coding strategies for HP models are possible: relative encoding and absolute en-
coding. In relative encoding [54], the move direction is defined relative to the di-
rection of the previous move. Alternatively, in absolute encoding [55], which is the
encoding chosen in this work, the direct coordinate presentation is replaced by let-
ters or numbers representing directions with respect to the lattice structure.

For absolute encoding in the 2D square lattice, the permitted moves are: forward→
(denoted by 0), down ↓ (1), backward ← (2), and up ↑ (3). A 2D conformation C of
N + 1 residues for a protein P is then an element C of Z/4ZN, with a first component
equal to 0 (forward) [54]. For instance, in Figure 3.2, the 2D absolute encoding is
00011123322101 (starting from the upper left corner). In that situation, at most 4N

conformations are possible when considering N + 1 residues, even if some of them
are invalid due to the SAW requirement.

3.5.1.2/ PROTEIN FOLDING AS CHAOTIC ITERATIONS

• Initial premises

The primary structure of a given protein P with N + 1 residues is coded by 00 . . . 0
(N times) in absolute encoding. Its final 2D conformation has an absolute encoding
equal to 0C∗1 . . .C

∗
N−1, where ∀i,C∗i ∈ Z/4Z, is such that E(C∗) = min

{
E(C)

/
C ∈ C(P)

}
.

This final conformation depends on the repartition of hydrophilic and hydrophobic
amino acids in the initial sequence.

Moreover, we suppose that if the residue number n+1 is forward the residue number
n in absolute encoding (→) and if a fold occurs after n, then the forward move can
only by changed into up (↑) or down (↓). That means, in our simplistic model, only
rotations of +π

2 or −π2 are possible.



3.5. PREDICTABILITY OF CHAOTIC DYNAMICS 43

Current conformation New conformation

C=(0,0,0,1,1,1) C’=(0,0,1,2,2,2)

Figure 3.3: Example of folding process.

Consequently, for a given residue that is supposed to be updated, only one of the
two possibilities below can appear for its absolute move during a fold:

– 0 7−→ 1, 1 7−→ 2, 2 7−→ 3, or 3 7−→ 0 for a fold in the clockwise direction, or

– 1 7−→ 0, 2 7−→ 1, 3 7−→ 2, or 0 7−→ 3 for an anticlockwise.

This fact leads to the following definition:

Definition 8:

The clockwise fold function is the function f : Z/4Z −→ Z/4Z defined by
f (x) = x + 1(mod 4).

Obviously the anticlockwise fold function is f −1(x) = x − 1(mod 4).

Thus at the n−th folding time, a residue k is chosen and its absolute move is
changed by using either f or f −1. As a consequence, all of the absolute moves
must be updated from the coordinate k until the last one N by using the same fold-
ing function. For example, if the current conformation is:

C = (C1, . . . ,C6) = (0, 0, 0, 1, 1, 1)

and the third residue is chosen to fold by a rotation of −π2 (mapping f , also referred
to as +), in which case the fold F is denoted by +3, the new conformation will be:

C
′

=
(
C
′

1, . . . ,C
′

6

)
= (C1,C2, f (C3), f (C4), f (C5), f (C6)) = (0, 0, 1, 2, 2, 2).

This folding process example is illustrated graphically by Figure 3.3.

• A formulation as chaotic iterations

Modelling protein folding using chaotic iterations can be justified as follows. At each
iteration, the same process is applied to the system (i.e. to the conformation), which
is the folding operation. Additionally, it is not a necessity that all of the residues fold
at each iteration: indeed it is possible that, at a given iteration, only some of these
residues folds. Such iterations, where not all the cells of the considered system are
to be updated, are exactly the iterations modeled by chaotic iterations in Section 3.2.
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Indeed, the protein folding process with folding sequence (Fn)n∈N consists in the
following chaotic iterations: C0 = (0, 0, . . . , 0) and,

Cn+1
|i| =

{
Cn
|i| if i < S n

f sign(i)(Cn)|i| else
, (3.7)

where the chaotic strategy S n,∀n ∈ N, is defined by S n = ~−N; N� \ ~−Fn; Fn�.

Thus, to prove that the protein folding process is chaotic as defined by Devaney,
is equivalent to prove that the graph of iterations of the chaotic iterations defined
above is strongly connected. This last fact is obvious, as it is always possible to
find a folding process that maps any conformation (C1, . . . ,CN) ∈ CN to any other
(C′1, . . . ,C

′
N) ∈ CN (this is Lemma 1 in [40]).

CN is the subset of conformations that are obtained starting from the initial confor-
mation (0, 0, . . . , 0) after N folding operations and such that all intermediate confor-
mations satisfy the SAW requirement. This SAW folding process requirement is the
most usual meaning of “SAW requirement” in the literature (it is used, for instance,
in [52, 56, 57, 58]).

Let us finally remark that it is easy to study processes such that more than one fold
occur per time unit by using chaotic iterations.

3.5.2/ CAN A NEURAL NETWORK PREDICT A FUTURE PROTEIN CONFORMATION?

In this set of experiments, multilayer perceptrons are used to learn the conformation of
very simple proteins (peptides). In fact, we consider proteins composed of five residues,
of which only 4 can change since the first one is always 0, and folding dynamics of two
or three folds. For example, if the current protein conformation is (0)1222, and folds +4
and −1 are successively applied, then the new conformation will be (0)0112. Obviously,
these choices, that lead respectively to 20736 and 186624 potential conformations, do
not correspond to realistic folding processes. However, they allow to evaluate the ability
of neural networks to learn very simple conformations.

The networks consist of MLP with 3 or 4 inputs, the current conformation without the first
residue and a sequence of 2 or 3 successive folds, that produce a single output: the
resulting conformation. Moreover, like in the previous chapter (more precisely as in Sub-
section 2.3.1.1), we changed the classical MLP input layer structure for the HPU (Higher-
order Processing Unit) one and we trained such network with a holdout validation through
a random sampling strategy, thanks to the L-BFGS optimization algorithm. Similarly, to
estimate the prediction accuracy, we considered the two same statistical measures than
in Chapter 2, namely the CVRMSE and the coefficient of determination R2 defined, re-
spectively, by Equations (2.1) and (2.2). Let us notice that in [40] we replaced R2 by an
alternative equivalent measure called coefficient of efficiency (E) based on the Average
Relative Variance (ARV) [59] (R2 ' E = 1 − ARV).

The considered neural networks differ in the size of a single hidden layer and are trained
until a maximum number of epochs is reached. As we set the order of the HPU struc-
ture to 3, instead of 3 and 4 initial inputs we have 19 and 34 inputs. We train neural
networks of 15 and 25 hidden neurons, using as maximum number of epochs a value in
{500, 1000, 2500}, whatever the number of initial inputs (see Table 3.2). The learning, vali-
dation, and test subsets are built in such a way that they respectively represent 65%, 10%,
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Table 3.2: Results of the validation of networks with an HPU structure of order 3 for
several numbers of hidden neurons.

Topology 3 initial / 19 HPU inputs and 1 output
Hidden neurons Epochs %CVRMSE R2

Data set of 5184 samples

15 neurons
500 24.97 0.6176

1000 20.67 0.7372
2500 16.69 0.8269

25 neurons
500 23.33 0.6627

1000 15.94 0.8435
2500 10.75 0.9285

Data set of 10368 samples

15 neurons
500 26.27 0.5777

1000 22.08 0.7000
2500 18.81 0.7775

25 neurons
500 24.54 0.6315

1000 16.11 0.8409
2500 9.43 0.9440

Data set of 15552 samples

15 neurons
500 24.74 0.6249

1000 19.92 0.7556
2500 16.35 0.8341

25 neurons
500 22.90 0.6753

1000 15.42 0.8533
2500 8.89 0.9499

Topology 4 initial / 34 HPU inputs and 1 output
Data set of 46656 samples

15 neurons
500 35.27 0.2394

1000 33.50 0.3136
2500 31.94 0.3741

25 neurons
500 35.05 0.2465

1000 32.25 0.3615
2500 28.61 0.4956

and 25% of the whole data set. In the case of 3 initial inputs data sets of 5, 184, 10, 368,
and 15, 552 samples are used, they represent 25%, 50%, and 75% of the 20, 736 potential
conformations. For the 4 initial outputs case we restrict our experiments to a data set of
46, 656 samples, that corresponds to 25% of the 186, 624 potential conformations.

In Table 3.2 we give, for the different learning setups and data set sizes, the mean values
of CVMSE and R2 for the output. To compute these values, 10 trainings with random sub-
sets construction and network parameters initialization were performed. It can be seen
that in all cases the best performances are obtained for the largest networks (25 hidden
neurons) that are the most trained (2500 epochs). Furthermore, a larger data set allows
only a slight increase of the prediction quality. We observe for a three time increase of
the data set: from 5, 184 to 15, 552 samples, a very small improvement of 1.66% for R2.

At a first glance, the prediction accuracy seems not too bad for the 3 initial inputs topology,
with coefficients R2 above 0.9. However, remember that we try to predict very simple con-
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formations far away from the realistic ones. Furthermore, a look at the results obtained for
the second topology, the one with 4 initial outputs, shows that predicting a conformation
that undergoes only one more folding transition is intractable with the considered learning
setups: R2 is always below 0.5. Clearly, the different MLP have failed at predicting the
protein folding dynamics. A larger neural network with a longer training process may be
able to improve these results. But finding a learning setup well suited for the prediction of
relevant proteins structures that are far more complex seems very hypothetical.

Finally, let us notice that the HPU structure has a major impact on the learning quality.
Indeed, let us consider the coefficient R2 obtained for the data set of 5, 184 samples and
a network composed of 25 hidden neurons trained during 2500 epochs. As shown in
Table 3.2 the coefficient R2 is about 0.9285 if the neural network has an HPU structure of
order 3, whereas experiments made without increasing the number of initial inputs give
0.6930 as mean value for R2. Similar experiments in case of the second topology result
in R2 = 0.2154 for the classical structure that has no HPU structure. That represents a
respective decrease of more than 25 and 50%, from which we can say that MLP networks
with a classical structure would have given worse predictions.

At this point we can only claim that it is not completely obvious that computational intelli-
gence tools like neural networks are able to predict, with a good accuracy, protein folding.
To reinforce this belief, tools optimized for chaotic behaviors must be found – if such tools
exist. Let us recall that we did not study the biological folding process, but the protein
folding as it is described in the 2D HP square lattice model. Consequently, we only claim
that the 2D folding process is chaotic and therefore unsuitable to give relevant predictions.

3.6/ CONCLUSION

In this chapter we have summed up different works [38, 39, 40] in which we have stud-
ied the ability of multilayer perceptron neural networks to deal with chaotic processes.
All these works are based on a rigorous theoretical framework that allows to model the
considered problems as dynamical systems shown to be chaotic as defined by Devaney.
First, we have built a globally recurrent multilayer perceptron architecture that can be
trained to learn chaotic iterations and thus constructed artificial neural networks proven
to be chaotic. Second, this work has been extended by providing a method to check
whether an existing neural network is chaotic or not through the verification of a property
on a graph describing the neural network evolution. As this previous point is the dual of
the first one, we have thus an equivalence between chaotic iterations and a particular
class of recurrent neural networks. Finally, we have investigated the ability of classical
feedforward multilayer perceptrons to predict chaotic dynamics considering a real un-
solved computational biology problem, namely the protein folding. Indeed, to solve this
problem, tools like neural networks have received a lot of attention assuming that the
folding process is predictable. However, as we have established that protein folding in the
2D hydrophobic-hydrophylic (HP) square lattice model is chaotic according to Devaney,
this assumption is questionable. The learning with feedforward multilayer perceptrons of
this natural dynamics tends to show that such chaotic behaviors are more difficult to learn
than nonchaotic ones.
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4
IMAGE STEGANALYSIS USING A

CONVOLUTIONAL NEURAL NETWORK

The research works presented in the previous part have investigated the use of shallow
neural networks, typically limited to one or two hidden layers. In such neural networks
the inputs are hand-designed and the network learns only to map given input features
to output data. Obviously, the choice of the input features is of great importance and a
key reason for the success or the failure of the neural network. To solve this problem
of input data representation, over the past years various machine learning methods that
learns to automatically extract from input data the suitable features to fulfill the prediction
or classification target task have been proposed. Since this family of methods consists
of networks with deep architectures having many hidden layers to learn high-level feature
representation, it is known as deep learning [60, 61, 62].

Today, for many challenging tasks deep learning has led to breakthrough improvements,
becoming the state-of-the-art method in natural language processing, image captioning
[63], or benchmark problems like the MNIST problem [64] that consists in the recognition
of handwritten digits. Deep learning has taken off because it seems to have the promising
potential to solve in a competitive way a wide-range of real-world applications. In fact, in
a variety of domains the expected impact of deep learning is such that it has given rise to
a sort of gold rush of technology innovation. Numerous deep learning startups have thus
emerged, usually to face a specific kind of problem, for example medical image anal-
ysis, and all american information technology giant, namely Google, Apple, Facebook,
Amazon, Microsoft (the GAFA or GAFAM), and even Tesla or Uber, have devoted large
resources to this field of research, trying to attract people which are expert in it.

Various deep architectures have been proposed over the years, leading to a continu-
ous enrichment, encompassing feedforward and recurrent networks. We can note Deep
Belief Networks [65], Convolutional Neural Networks (CNN) [66, 67, 68], and even to
some extent the so-called Reservoir Computing [69, 70] studied in the final chapter. In
the latter case, this vision is supported by several research works which have proposed
deep Reservoir Computing networks [71] obtained by stacking multiple reservoirs. The
current amazing success of deep learning comes not only from the exponential advan-
tage of depth compared to shallow networks, but also from the increasing availability of
huge amounts of training data and powerful computing platform, and more particularly
from the parallel computing ability of General-Purpose computing on Graphics Process-
ing Units (GPGPU).
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This chapter is devoted to research works on the use of Convolutional Neural Networks to
perform image steganalysis in spatial domain. It is focused on our main result [72] which
has been presented during the 32nd International Conference on ICT Systems Security
and Privacy Protection - IFIP SEC 2017 in May 2017. This result is a criterion to choose
the appropriate steganalyzer between a CNN-based one and a conventional steganaly-
sis method, considering the state-of-the-art approach in each family. To the best of our
knowledge, at the time we presented this approach, we had obtained the best detection
performance. We start with an introduction to image steganography and steganalysis in
Section 4.1, followed by a brief description of the steganographic algorithms we consider
and a review on steganalysis methods, respectively in Sections 4.2 and 4.3. In Sec-
tion 4.3 we also introduce our first proposal, a shallow CNN using large convolution filters
only suitable for the case where the embedding process is done with the same stego key.
We continue with a study of the most competitive CNN-based steganalyzer proposed by
Xu et al. [73] in Section 4.4, on which is based our main result described in Section 4.5.

4.1/ INTRODUCTION

Steganography is the art and science of covert communications, whose goal is to embed
a secret message inside an innocent cover media transmitted through a public communi-
cation channel so that the message can be extracted at destination. In this work we focus
on digital image as cover media since in our digital world images are easily produced
and diffused. The security of such a steganographic scheme, which is used to embed
and extract the secret message, relies on its ability to perform changes in the cover as
less detectable as possible. Therefore, the security of a steganographic tool is assessed
through its resistance against an adversary that tries to detect the presence of an em-
bedded message. Steganalysis, as adversary of steganography, face this challenge and
thus refers to approaches whose purpose is to distinguish malicious stego images from
innocent cover ones.

Like for crypto systems, Figure 4.1 shows how the famous prisoners’ problem formulated
by Simmons [74] can be solved with help of steganography. We can see how two prison-
ers, Alice and Bob, use this kind of information hidding scheme to communicate together.
Alice sends a hidden message to Bob by building a stego image thanks to a chosen
steganographic tool, controlling the way the embedding is done with a stego key. After
transmission through the unsecured channel, Bob can extract the message, assuming
that he knows the steganographic tool and the stego key which were chosen. To decide
whether it allows or not the transmission, the warden Eve uses a steganalysis method,
also called a steganographic detector or steganalyzer.

There are two categories of embedding schemes in digital image steganography: spatial
domain embedding and transform, or frequency, domain embedding. In the first category
the embedding is performed by changing some pixel values, whereas in the second cat-
egory the secret message is hidden in transform coefficients, typically Discrete Cosine
Transform (DCT) coefficients or Discrete Wavelet Transform (DWT) ones. Most of these
schemes consist in minimizing an additive distortion function defined as the sum of em-
bedding costs computed individually for each pixel. Obviously, the cost value associated
to a pixel reflects its detectability after modification: the smaller the cost, the less de-
tectable the embedding will be. In this work, the image domain is the only information
supposed to be known about the embedding process.



4.2. IMAGE STEGANOGRAPHY IN SPATIAL DOMAIN 51

Secret

message

Stego image

Secret

message

Stego image

Secret

message

Stego key Stego key

Steganalysis

Steganography

Embedding

Cover image

Extraction

alice bob

Unsecure channel

eve

Figure 4.1: Illustration of steganography and its counterpart steganalysis with Simmons’
prisoners’ problem [74].

Several spatial domain steganography methods have been designed over the past years,
going from simple LSB (Least Significant Bit) replacement to complex content-adaptive
embedding algorithms, like the older HUGO [75] and WOW [76] schemes, or more re-
cent ones as HILL [77], STABYLO [78] (designed by colleagues of the AND team), and
MiPOD [79]. Examples of possible alternatives in frequency domain of JPEG images are
nsF5 [80], the Uniform Embedding Distortion (UED) algorithm [81], and its variant UERD
[82]. An interesting scheme proposed by Holub et al. [83], named UNIWARD, can be ap-
plied in both domain, leading respectively to S(patial)-UNIWARD and J(PEG)-UNIWARD.

In the following section we give some details on S-UNIWARD, MiPOD, and HILL, the three
most secure spatial domain embedding schemes targeted by our work.

4.2/ IMAGE STEGANOGRAPHY IN SPATIAL DOMAIN

What makes the three aforementioned steganographic algorithms different from one an-
other is the distorsion function ρ used to compute the modification cost for each pixel of
the cover image. Indeed, once the per-pixel distortions are computed, they all choose the
pixels that will embed the message by solving the minimization problem evoked above
with the near-optimal Syndrome-Trellis Coding (STC). The selected pixel locations de-
pend also from the stego key since it seeds the PRNG (Pseudo Random Number Gen-
erator) used in STC. Let X denote a cover image and ρ(X) be the matrix whose elements
represent the modification costs of the pixel values by -1 or +1, then, by ordering the
pixels according to their value in ρ(X), a set of pixels minimizing the embedding cost of
the message can be computed. The distortion function is of great importance, because
it must be defined in order to reflect as precisely as possible the underlying cover image
model. Therefore it must return large values in a easy-defined or smooth area, like a blue
sky, whereas in textured or “chaotic” areas low values are expected.

In the case of S-UNIWARD [83] and as one can understand from the complete name:
UNIversal WAvelet Relative Distortion, the distortion function ρU estimates how the
change of a pixel value affects a 2D block of wavelet coefficients whose size depends
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from the 2D wavelet support. Formally ρU is defined by:

ρU(X) =

3∑
k=1

1
|X ? Kk| + σ

? |Kk|x, (4.1)

where ? is a convolution mirror-padded product, Yx is the result of a 180 degrees rotation
of Y, Kk with 1 ≤ k ≤ 3 are Daubechies-8 wavelet kernels in the three directions, and σ

is a stabilizing constant. It should be noticed that the multiplicative inverse is element-
wise applied. An element of ρU(X) is small if and only if there are large variations of large
cover wavelet coefficients in the three directions, where texture and edges appear. Similar
combinations of convolution products with a high-pass filter and two low-pass ones can
be found in the definition of the distortion function ρH of the HILL steganographic scheme.

The steganographic algorithm MiPOD [79], which means Minimizing the Power of Optimal
Detector, is quite different. It is a probabilistic approach based on a locally-estimated
multivariate Gaussian cover image model from which a stego image model is derived.
More precisely, given the matrix β of change rates βn, where βn is the probability that stego
pixel yn is obtained by changing the cover one xn (P(yn = xn + 1) = P(yn = xn − 1) = βn),
MiPOD tries to find probabilities minimizing a deflection coefficient, Σnσ

−4
n β2

n, where σn is
the variance of xn. Notice that the product is element-wise applied and the sum concerns
all the elements of the matrix. Thanks to a Wiener filter and a Lagrangian method, the
change rates βn can be computed. Considering such pixel probabilities, the distortion
cost ρM is defined by:

ρM(X) = ln
(
1
β
− 2

)
. (4.2)

Again, the multiplicative inverse is applied element-wise.

Figure 4.2 from [79] shows clearly that, as noticed previously, the three steganographic
algorithms we consider are the most secure, since they offer the better resistance against
steganalysis with the state-of-the-art conventional steganalyzer maxSRMd2 [84]. It can
be also seen that the detection errors increase as the embedding payload value, ex-
pressed in bits per pixel, decreases towards zero. Indeed, the lower the payload value
the less pixels are modified and thus the more difficult it is to distinguish a stego from a
cover. The experiments have been all carried out on BOSS [85] image database.

4.3/ IMAGE STEGANALYSIS

Simultaneously with steganographic algorithms, steganalysis tools have evolved from
early targeted techniques to approaches that are not specific for a given embedding
scheme. In fact, the ultimate goal is to design an universal (or blind) steganalyzer able
to deal effectively with a wide range of steganographic methods. Naturally, an univer-
sal steganalyzer is more complex to develop and can be less effective than a specific
steganalytic algorithm for a given embedding scheme.

Most of the actual steganalyzers are feature-based approaches consisting of two steps.
The purpose of the first stage is to extract useful information on image content by com-
puting a set of features, while the second one will use this set to train a machine learning
tool to decide whether the input image is a cover or a stego. Depending on how the fea-
tures are defined, the current steganalyzers can be divided in two families. On the one
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Figure 4.2: Detection error for different embedding schemes when steganalyzing with
maxSRMd2.

hand, conventional image steganalysis approaches use Rich Models (RM) that include
tens of thousands of handmade features and, on the other hand, as the deep learning
approach called convolutional neural networks learns to automatically extract the most
relevant high-level features of an input image to fulfill the classification task, the CNN-
based steganalyzer family has recently emerged. In the following subsections we will
present results in both steganalyzers families.

4.3.1/ CONVENTIONAL STEGANALYSIS

Many rich models have been proposed over the past years for the spatial domain (SRM)
[86, 87, 88] and the JPEG one [89]. Given a set of features provided by such a model,
the second step, which aims at distinguishing stego images from cover ones, is then
usually done in conventional state-of-the-art steganalyzers with Ensemble Classifier (EC)
[90]. This classifier implements a decision function based on a simple majority voting
between Fisher Linear Discriminant (FLD) components. A support vector machine [91] or
a multilayer perceptron [92] are possible alternatives to EC.

The combination SRM+EC allows to detect images embedding a message with the
steganographic algorithm HUGO [88] for payloads of 0.4 and 0.1 bpp, with errors of 13%
and 37% respectively, on the BOSS steganalysis benchmarking database. These errors
were slightly reduced (12% and 36%) in [87] thanks to an improved rich model, and a
similar model denoted J(PEG)PSRM has been applied in the JPEG domain for the em-
bedding scheme J-UNIWARD. Indeed, the rich image model used in [88] is based on
features built as co-occurrence matrices from noise residuals and the size of these matri-
ces increases exponentially with the neighborhood size of a pixel. The Projection Spatial
Rich Model (PSRM) proposed in [87] solves this problem, and thus allows to reduce the
detection errors, by projecting neighboring residual samples onto a set of random vectors
and taking the histogram of the projections as the feature.
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Today, Selection-Channel-Aware (SCA) variants of the popular SRM [84, 93, 94] provide
the most accurate results, because they take into account the probabilities with which
cover pixels are modified during the embedding process (content-adaptivity). For WOW,
detection errors of 15% and 30% are obtained for payloads of 0.4 and 0.1 bpp, respec-
tively, with maxSRMd2 [84], while for S-UNIWARD and HILL we have obtained the fol-
lowing corresponding errors: 19% and 40%, 23% and 43%. In [95] the authors have
proposed a SCA variant for the JPEG domain, considering DCTR [89] and PHARM [96]
as rich models. They also noticed that, as highlighted by the above detection errors with
maxSRMd2, the security of S-UNIWARD and HILL is marginally decreased with SCA,
whereas WOW suffers the most.

4.3.2/ CNN-BASED STEGANALYSIS

Deep learning architectures are particularly fruitful for solving various challenging tasks
in computer vision, becoming the state-of-the-art for many of them. Among the different
network architectures belonging to this family of machine learning methods, convolu-
tional neural networks [66] are in particular well-suited for classification tasks based on
the detection of variations in 2D shapes. Such deep learning networks achieved the best
results for many image classification benchmarking problems like MNIST [64], CIFAR-10
[97], or CIFAR-100 [98]. CNNs are not only impressive with toy data sets like MNIST,
they are also very successful when dealing with real life data such as images provided
by medical imaging technologies. In this latter field of application, deep learning appears
to be a breakthrough technology for fast and automated early detection of illnesses [99].
As image steganalysis is a similar classification problem and since both features extrac-
tion and classification steps of conventional image steganalysis approaches are perfectly
embodied in the CNN architecture, different studies have investigated the design of a
CNN-based steganalyzer these last years.

4.3.2.1/ NETWORK ARCHITECTURE

From an architecture point of view, a CNN is a feedforward neural network composed of
two parts matching exactly the two steps used in the original conventional steganalysis
scheme. The first part, called the convolutional part, consists of one or several layers
trained to successively extract feature maps becoming smaller with the layer depth. The
second part is composed of some fully-connected layers trained simultaneously to per-
form the classification task. This latter is somewhat similar to a multilayer perceptron that
has more or less hidden layers of variable size. In fact, the most discriminant the features
are, the less complex the second part. Hence, a CNN does not only learn how to classify,
but also how to automatically find a set of features giving a better representation of the
input image thanks to 2D convolution kernels.

A feature map is usually produced by one of the two following operations (see [67] for
more details). First, a combination of filtered maps of the previous layer (or the input
image for the first layer) followed by a nonlinear processing using an activation function.
Second a size reduction (subsampling) through pooling, typically average or max pooling,
over contiguous regions. While the first operation is done by a neuron of a convolutional
layer, the second one is performed by a unit of a pooling layer. In the convolutional part,
which consists of stacked convolutional and pooling layers in arbitrary order, the training
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Figure 4.3: A Convolutional Neural Network for the MNIST problem: (a) global architec-
ture and (b) detailed view of the second layer.

aims thus at optimizing the kernel values and the bias of each convolutional neuron.
Compared to fully-connected layers, convolutional layers have a lower training cost, since
the sharing of all kernel values by all the pixels of the input image, or the feature maps
in the case of inner layers, not only reduces the set of weights, but also improves the
generalization performance. Sometimes for sake of simplicity, like in the following, when
pooling is systematically applied after a convolutional operation, a layer will designate a
combination of both operations.

An illustrative example of a typical CNN architecture for the MNIST classification problem
is shown in Figure 4.3(a). The MNIST is a large database of 28 × 28 pixels gray-level im-
ages obtained by normalizing and centering handwritten digits scans. It can be seen that
the CNN consists of two layers, where each combines convolutional and pooling layers,
producing 8 and 16 features maps, with size 12 × 12 and 4 × 4 pixels respectively, and a
fully-connected part reduced to the output layer with one output neuron per possible digit
value. The input image is slightly smaller (24× 24 pixels) than the original one, because it
results from a random cropping with a 24 × 24 window. Indeed, the final prediction for an
original digit image is obtained by averaging the network prediction of four random crops,
a data augmentation technique improving generalization.

Figure 4.3(b) shows a detailed view of the chaining of the different steps applied by the
second layer in order to produce a feature map from the 8 features maps issued from the
first layer. It can be seen that 8 convolutions of size 5× 5, applied with stride and padding
values equal, respectively, to 1 and 2, are combined together to form a feature map
having a similar size to that of the input image. This map is then processed by a ReLU
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activation function to break the linearity introduced by the combination, followed by a max
pooling with non-overlapping regions of 3 × 3 values (stride with value 3), finally leading
to a feature map whose size, in comparison with the input image, is sixth times smaller
in each dimension. A formal description of the different steps can be found in our paper
[100], in which we have designed a CNN-based steganalyzer for embedding process with
the same stego key. This later work is further discussed thereafter in Subsection 4.3.2.3.

4.3.2.2/ TRAINING

As in other neural networks, the training (or learning) process consists in minimizing a
training error (or loss function) using an optimization algorithm that updates the network
parameters (weights and biases). A mini-batch gradient-based optimization algorithm is
the most common choice and the Stochastic Gradient Descent (SGD) is very popular,
particularly in the deep learning community, but more advanced techniques, such as
Adadelta or Adagrad, might also be considered. Obviously, in that case the well-known
backpropagation algorithm, which allows to compute the gradient of the training error,
is the workhorse of the training process. A mini-batch gradient descent is interesting
because it usually provides a more stable convergence. The network parameters are
usually optimized until the number of epochs exceeds some specified maximum values,
or when the training error reaches a given limit.

4.3.2.3/ A REVIEW OF CNN-BASED STEGANALYZERS

Since 2014, several research works have investigated the design of CNN-based ste-
ganalyzers bearing in mind the objective of outperforming state-of-the-art conventional
steganalysis approaches. We will present works that have considered various stegano-
graphic algorithms, like HUGO [75], WOW [76], and S-UNIWARD [83] in [101], or only
the last one in [102]. For the experiments, databases of 256× 256 or 512× 512 pixels gray
scale images are classically considered, mainly from the well-known BOSS database [85]
(Break Our Steganographic System) in the case of spatial steganalysis.

The first attempt at designing a CNN-based steganalyzer for image steganalysis is due
to Tan et al. [103]. Their proposal, a stacking of convolutional auto-encoders, yielded
for HUGO a detection error more than twice as bad as the one given by SRM+EC: 31%
compared to 14% for a payload of 0.4 bpp.

The following study by Qian et al. [101] has dealt with 256 × 256 input images, and
has proposed a CNN consisting of a convolutional part of 5 layers producing at the end
256 features, which are then processed by a fully-connected part of two hidden layers
and a final output one of two softmax neurons giving, respectively, the probability of being
a cover and a stego image. The preliminary high-pass filtering is done using a 5 × 5
kernel, called F0, similar to the 5 × 5 kernel predictor defined in [86]. As noticed by
Fridrich and Kodovský in [86], this kernel is inspired by a specific embedding algorithm,
namely HUGO, but it worked well for the other steganographic algorithms they tested.
The detection performance of this CNN was still slightly lower than the state-of-the-art
SRM+EC conventional steganalyzer, but Pibre et al. [102] improved it thanks to a CNN
with a different shape. By reducing the number of layers, but using larger ones resulting
thus in more feature maps, they were able to reduce the detection error by more than
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Figure 4.4: CNN for image steganalysis when embedding is done with same stego key.

16% for S-UNIWARD at 0.4 bpp. They also emphasized that the high-pass filtering with
F0 was mandatory, since they were not able to train a CNN without it.

In comparison with the work of Pibre et al., the CNN we designed in [104] being shallow
as can be seen in Figure 4.4, was quite different and calling into question some assump-
tions previously made. On the one hand, we proposed a convolutional part of two layers:
a first layer reduced to a single 3 × 3 kernel trained to replace F0, followed by a layer
using large kernels (almost as large as the image size). On the other hand, the resulting
set of 256 features from second convolutional layer (for an input image of 512 × 512 pix-
els) was so discriminating that the fully-connected network doing the classification task
could be shortened to the two final softmax neurons. As highlighted by Table 4.1, which
reports detection accuracies for WOW, HUGO, and J-UNIWARD embedding schemes,
with payloads of 0.1 and 0.4 bpp, this CNN is able to detect different steganographic algo-
rithms, working in spatial and frequency domains, almost without any error for a payload
of 0.4 bpp. The testing database consists of 8, 000 pairs of cover and stego images taken
from Raise database and the CNNs are the best ones obtained after training on a part
of the BOSS one with a scenario that can be seen as a version of the clairvoyant sce-
nario considered in [102]. In this scenario, cover and stego images come from the same
database and the steganographic algorithm, as well as the payload value, are supposed
to be known. From the image-content point of view, the Raise database is rather differ-
ent from BOSS database, therefore the testing scenario is equivalent to a cover-source
mismatch scenario.

Unfortunately, our work, as well as the one of Pibre et al., suffers from a crippling draw-
back: stego images were always obtained by using the same embedding key. In fact, this
not recommended “same embedding key" scenario, since embedding several messages
with the same key weakens security, comes from a mistake: the use of C++ embedding
simulators from Binghamton DDE Lab website1. Consequently, when processing stego
images produced with different embedding keys, as expected, the detection performance
drops dramatically, far below the one of the state-of-the-art SRM+EC approach. Let us
notice that the work by Qian et al., described in the previous paragraph, certainly suffers
from the same drawback.

More recently, the works [73] and [105] by Xu et al. have shown that CNN-based ste-
ganalysis remains competitive with conventional steganalysis. In [73] they first proposed
a structural design of CNNs for steganalysis that is neither large, nor deep, and learns
from noise residuals, since they considered as input image the one issued from high-pass

1http://dde.binghamton.edu/download/stego_algorithms/

http://dde.binghamton.edu/download/stego_algorithms/
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Table 4.1: Steganalysis results obtained from the best CNNs produced by the training
process under clairvoyant scenario.

Steganographic algorithm and payload Epoch Detection accuracy
Training Testing number Cover Stego Total

WOW 0.4 WOW 0.4 34 94.96% 99.59% 97.28%
WOW 0.1 WOW 0.1 52 74.46% 81.03% 77.74%
WOW 0.1 WOW 0.4 52 74.46% 99.01% 86.73%
HUGO 0.4 HUGO 0.4 41 94.66% 99.53% 97.09%
HUGO 0.1 HUGO 0.1 54 79.90% 73.30% 76.60%
HUGO 0.1 HUGO 0.4 54 79.90% 99.28% 89.59%

J-UNIWARD 0.4 J-UNIWARD 0.4 9 85.60% 98.46% 92.03%
J-UNIWARD 0.1 J-UNIWARD 0.1 75 62.91% 83.91% 73.41%
J-UNIWARD 0.1 J-UNIWARD 0.4 75 62.91% 98.52% 80.72%

filtering using the kernel F0. The architecture of such convolutional networks, which is
the basis of our work presented thereafter, will be described in detail in the next sec-
tion. The experiments they completed have considered two spatial content-adaptive
steganographic algorithms: S-UNIWARD and HILL. They have shown that the perfor-
mance gained by an ensemble of five CNNs is comparable to the one of SRM+EC. In
fact, they trained 5 CNNs because the data set was split into 5 test subsets, and thus an
input image class was predicted by averaging the output probabilities of the CNNs. As an
illustration, for S-UNIWARD they observed detection accuracies of 57.33% and 80.24%
for payloads of 0.1 and 0.4 bpp, whereas the ones of SRM+EC were, respectively, of
59.25% and 79.53%. However, the authors have not applied their approach to JPEG
domain steganographic algorithms and they pointed out that in the spatial domain more
advanced conventional methods, such as [94] or [106], still outperformed their approach.

In the following work [105], Xu et al. decided to study the merging of CNNs and ensem-
ble classifier. The background idea was to train a second level classifier using information
provided by CNNs. Furthermore, they also slightly modified the architecture of the original
CNN designed in [73], which is denoted by ‘SIZE 128’. This new ‘SIZE 256’ CNN archi-
tecture, the number of final features given by the convolutional part, has one more layer
and changed pooling sizes in the previous ones. In addition to the ensemble method de-
scribed in the above paragraph, called PROB, where EC will use the output of 16 CNNs
instead of five, they defined two further ensemble methods. The first one, PROB_POOL,
is supposed to lower the loss of information induced by the pooling operation. Indeed,
when the stride value is larger than one, some sampling operations are dropped. For a
stride value s > 1, applying the pooling on a block of p × p pixels gives a single value,
whereas for a stride of 1 the same block would have been replaced by p × p values. The
idea is thus to also consider independently each remaining p × p − 1 possible sampling,
which means as they used pooling operations with stride of 2 that there are 4 possible
samplings in a layer. Consequently, a CNN with a single layer would be applied 4 times
on the same input image, giving a prediction for each possible sampling. For two layers,
the number of sampling combinations is 42 = 16, and so on. In the case of the ‘SIZE 256’
CNN architecture, since 16 trainings are done for each, the final prediction for an image
is obtained by averaging 45 × 16 = 1, 024 × 16 = 16, 384 predictions. The second new
ensemble method, called FEA, is simpler: it uses an architecture merging the convolu-
tional part and the ensemble classifier. Let us notice that the larger number of both CNNs
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and features results in lower bias and variance. From the experiments done with these
6 ensemble scenarios (two size and three methods), Xu et al. concluded that it might be
interesting to replace the fully-connected part of the CNN by EC for image steganalysis.
The FEA method was the best one for ‘SIZE 256’ with a detection error of 18.44%, but,
compared to the 18.97% of PROB without EC, the improvement seems minor.

Another newly published contribution [107] by Qian et al. showed that a CNN trained
to detect a spatial steganographic algorithm with a high payload embedding allows to
improve the detection performance for lower payloads. Like in all the above works, the
input of the CNN is again not the original image, but the one obtained after filtering with
kernel F0. For WOW, the pre-training with stegos obtained using a payload of 0.4 bpp led
to lower detection errors in comparison with SRM+EC for 0.1, 0.2, and 0.3 bpp payloads.

Finally, we can notice the latest work [108] by Zeng et al. dealing with JPEG domain
steganalysis. A domain which has received considerably less attention when designing
CNN-steganalyzers. In this paper, the authors stated that compared to rich models, a
CNN cannot efficiently learn to extract noise residuals, being unable to find similar or
better kernels than the ones used in rich models. Therefore they proposed to start by
manually applying to the input image the first two phases of DCTR [89], namely a convo-
lution followed by Quantization & Truncation (Q&T). They used 25 residual images, where
each is obtained by using a 5× 5 DCT basis pattern, and three Q&T combinations. Then,
for each group of residual maps for a given Q&T combination, a subnetwork correspond-
ing to a simplified version of the convolutional part proposed by Xu et al. in [73] is trained
to produce a feature vector of 512 components. To obtain the final prediction, the three
vectors are concatenated and given as input to a three-layer fully connected network,
which is trained together with the three subnets. Based on the experiments performed on
more or less large databases of images issued from ImageNet, the authors claimed that
their proposal outperforms all other existing steganalysis approaches (no matter whether
they are deep learning or conventional ones).

4.4/ IMAGE STEGANALYSIS IN SPATIAL DOMAIN USING A CONVO-
LUTIONAL NEURAL NETWORK

This section begins with the description of the CNN architecture proposed in [73], which is
then experimentally studied in order to analyze what causes it to fail or succeed to detect
whether an image embeds a hidden message.

4.4.1/ SHAPE OF THE CNN-BASED STEGANALYZER PROPOSED BY XU ET AL.

As can be seen in Figure 4.5(a), Xu et al. proposed an architecture that takes as input the
High-Pass Filtered (HPF) version of the input image issued from filtering with F0 [86, 101,
102]. This filtering is obviously of great importance, since it provides the input information
to the CNN, and thus must be suited to the classification task. The relevance of this
kernel comes from its design for rich models. Overall, the CNN consists of 5 convolutional
layers and a fully-connected part reduced to two softmax neurons, each of them giving
the probability for an image to belong to one of the two classes (cover or stego). A
classification part reduced to output neurons means that a linear classification is able
to distinguish covers from stegos using the features produced by the final convolutional



60 CHAPTER 4. IMAGE STEGANALYSIS USING A CONVOLUTIONAL NETWORK

(a)
Input image

512x512

softmax

Neurons

5x5

1 kernel

F0 Fully connected

layer

1x(512x512)

8x(256x256)

High−pass filtering with 

2 3 4 51

Convolutional layers

16x(128x128)

32x(64x64)
128x(1x1)

64x(32x32)

HPF image

512x512

(b)

128 kern.

1x1x64

5x5x1

8 kernels size 5x5

stride 2 5x5x8

16 kernels size 5x5

stride 2

Average

pooling

Average

pooling

32x32

global

size 5x5

stride 2

Average

pooling64 kern.

1x1x32size 5x5

stride 2

Average

pooling

16x(128x128)

64x(32x32)32x(64x64)

8x(256x256)

Average

pooling
BN Tanh

ReLUBNReLUBNReLUBN
32 kern.

1x1x16

Layer 1 Layer 2

Layer 3 Layer 4 Layer 5

1x(512x512)

TanhBNABS

128x(1x1)

HPF image

512x512

Figure 4.5: CNN proposed by Xu et al. in [73]: (a) overall architecture and (b) detailed
view of the convolutional part.

layer. We came to a similar classification part in our previous work [104] evoked above,
even if in our case the problem was simpler due to the use of a single embedding key. Let
us emphasize that this CNN was the first one not affected by the latter problem. In [101,
102] they had several hidden layers, more or less large (from 128 to 1, 000 neurons).

Starting with a HPF image of 512 × 512 pixels, the convolutional part results in a vector
of 128 features, as shown by the detailed view of Figure 4.5(b). Each of the four first
layers successively halves the image size by generating feature maps using an average
pooling, while the fifth one replaces each feature map (32 × 32 pixels) by a single value
obtained through a global average pooling. From the convolution kernel point of view,
layers 1 and 2 learn 5 × 5 kernels, and the remaining layers 1 × 1 ones, the idea being
to avoid an overfitting of the CNN to image content and/or stego noise. Layer 1 has
also a specific function applied onto the outcome of the convolution, namely the absolute
function (ABS), supposed to ensure that the model takes care of the symmetry in noise
residuals like in rich models [86]. Batch Normalization (BN) [109] is performed in every
layer, because it improves the training (faster and lower prediction error) by allowing a
stable distribution of nonlinearity inputs. A mixing of Tanh and ReLU nonlinear activation
functions offered the best performance.

4.4.2/ DETECTION PERFORMANCE EVALUATION OF THE CNN

To study and assess the performance of Xu et al. proposal, which was originally evaluated
using a modified version of Caffe toolbox, the corresponding CNN has been implemented
with the open source software library TensorFlow [110]. The implementation is available
on download from GitHub2. We had previously used in [104] the computing platform Torch

2https://github.com/rcouturier/steganalysis_with_CNN_and_SRM.git

https://github.com/rcouturier/steganalysis_with_CNN_and_SRM.git
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[111], but TensorFlow seems to make better use of the GPUs. All the experiments are
performed on a NVIDIA Tesla Titan X GPU, using as cover images the 10, 000 images from
BOSS database [85]. Six stego images are associated to each cover image. They are
obtained by embedding a message with S-UNIWARD, MiPOD, and HILL schemes, thanks
to the Matlab scripts downloadable from Binghamton DDE Lab website considering two
different payload values: 0.1 and 0.4 bpp. During a training execution a CNN is trained on
a set of 5, 000 cover-stego pairs and its detection performance assessed on the remaining
5, 000 pairs. Both training and testing sets are built by randomly picking pairs of images,
using a different seed for each execution.

Even if we implemented exactly a CNN according to the proposal, there is a major differ-
ence in comparison with the original work in the way the final prediction is obtained. In
[73] Xu et al. generated from a training set five different non-overlapping 4, 000/1, 000 splits
and each of them is used to train separately a CNN occurrence. The final prediction for a
given test image is then obtained by averaging the five output probabilities.

In our work, the final prediction is computed from a set of T trained CNNs which are
denoted as CNN1,CNN2, . . . ,CNNT . First of all, each CNNi, 1 ≤ i ≤ T , memorizes its
L last versions provided by the L last training epochs obtained all along the program
execution. These internal CNNs are denoted as CNN1

i ,CNN2
i , . . .CNNL

i . Each of these
internal CNNs gives an answer, which is 0 if the tested image I is declared as cover and
1 otherwise. Finally, the average of all the values is computed, and a discrete answer is
returned by each CNN depending on whether this average is greater or equal to 0.5 or
not. This is formalized for each i, 1 ≤ i ≤ T , by:

is_stego(I,CNNi) =

 1
L

L∑
j=1

is_stego(I,CNN j
i ) + 0.5

 . (4.3)

The aggregation of these results must take into consideration the fact that an image I
we want to classify is used in training step in some CNNi or not. Let us consider the set
TI =

{
i|1 ≤ i ≤ T and I is used in testing step of CNNi

}
and TI be its cardinality. The number

TI counts the number of times I is used as a testing image by some CNNs. The final
answer is then the discrete answer of the average of all the CNNs that have used I as
testing image. This is formalized by:

is_stego_CNN(I) =

 1
TI

∑
i∈TI

is_stego(I,CNNi) + 0.5

 . (4.4)

Indeed, as both training and testing sets are built by randomly picking images, the number
of times an image I is in a test set varies.

Due to the huge computation cost we have only trained CNNs using MiPOD data set and
tested them directly on the S-UNIWARD and HILL data sets. Hence, we can also assess
whether a CNN trained with an embedding scheme is still competitive for the other ones.
We have chosen MiPOD because it is supposed to have the best security and thus should
be the most difficult to detect, even if MiPOD and HILL are very close according to [79].

The key training parameters for reproducible experiments are discussed thereafter. First,
a CNN is trained for a maximum number of training epochs Emax set to 1, 000 and 300,
respectively, for embedding payloads of 0.1 and 0.4 bpp, without any overfitting control with
a validation set. In fact, overfitting did not appear as a problem due to a careful choice of
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Table 4.2: Average detection error as a function of classifier (original Caffe by Xu et al.,
our TensorFlow trained only with MiPOD at 0.4 bpp, and SRM+EC) and of payload.

S-UNIWARD MiPOD HILL
0.1 0.4 0.1 0.4 0.1 0.4

Caffe [73] 42.67 19.76 X X 41.56 20.76
TensorFlow 47.38 20.52 43.72 19.36 46.79 20.25
SRM + EC 39.84 18.06 41.18 21.42 42.96 23.31

SRM + EC (blind) 40.57 20.85 41.18 21.42 43.35 23.99

the values for Emax and the evaluation of the validation set was also time consuming, so we
decided to drop this control. To compute the prediction given by a network CNNi, L = 20
occurrences are used. Second, the network parameters are optimized by applying a
mini-batch stochastic gradient descent, using a mini-batch size of 64 samples, but without
ensuring that both cover and stego of a given pair are in the same batch like Xu et al.. The
gradient descent parameters are: a learning rate initialized to 0.001, but with no weight
decay, and a momentum set to 0.9.

The obtained average detection errors are reported in Table 4.2. The first line labelled
with “Caffe [73]” recalls values given in [73]. It should be noticed that "X" means that HILL
has not been evaluated with the Caffe framework. The second line gives the average
error rates for embedding payloads of 0.1 and 0.4 bits per pixel, using respectively T = 9
and T = 12 independent training runs of the CNN TensorFlow implementation detailed
in the previous paragraphs. The third gives the average error rates for 200 runs with
classical SRM+EC. In this latter context maxSRMd2 [84] has been used as a feature set.
Finally, the last line gives the results obtained when the training stage is executed with
images modified by MiPOD, whereas the testing stage is executed with images modified
with another embedding scheme (SRM+EC and maxSRMd2 are still used). Remember
that an objective is to develop a completely blind steganalysis approach. It is not difficult
to understand that the detection error is larger in this context, since the steganographic
scheme used to learn is not necessarily the one used in the testing phase.

From the values given in this table we can draw several conclusions. First, despite the
differences highlighted previously, for a payload of 0.4 bpp the TensorFlow implementation
produces nearly the same performance for S-UNIWARD and HILL than the original Caffe
one, while for 0.1 bpp the performance is worse due to the blind context. Second, we
observe that SRM+EC results in the best performances for S-UNIWARD in case of non-
blind steganalysis. Third, for MiPOD the CNN approach is still competitive with SRM+EC.
Fourth, the CNNs trained by only making use of the MiPOD data set can provide a similar
detection accuracy for S-UNIWARD and HILL, even if for the payload of 0.1 bpp a larger
degradation of the accuracy can be noticed. Obviously, the lowest detection error is
gained for the embedding scheme which has provided the training data. Fifth, CNNs
outperform SRM+EC in blind steganalysis context with a payload of 0.4 bpp, which means
that CNNs allow a better generalization to different steganographic algorithms.

4.4.3/ CHARACTERIZING THE IMAGES MISCLASSIFIED BY THE CNN

Let us start with some illustrative examples of images describing the typical behavior of
the CNN in the case of MiPOD with payload 0.4 bpp. Figure 4.6 presents four case exam-



4.4. IMAGE STEGANALYSIS IN SPATIAL DOMAIN USING A CNN 63

(a) Cover 1388.pgm and differences with stego. (b) Cover 8873.pgm and differences with stego.

(c) Cover 1911.pgm and differences with stego. (d) Cover 3394.pgm and differences with stego.

Figure 4.6: Examples of differences images between cover and corresponding stego
when embedding is performed using MiPOD with a payload of 0.4 bpp.

ples where for each we have the cover image and the corresponding differences between
it and the stego one. From the images showing the differences we can distinguish two
groups of images according to the pixels modified by the embedding process. It clearly
appears that for both images shown on the upper line, 1388.pgm and 8873.pgm, MiPOD
mainly modifies pixels corresponding to edges. For 1911.pgm and 3394.pgm, changes
are scattered without obviously highlighting any underlying image edge. Consequently,
since a CNN mainly learns to detect underlying edges, one can easily guess that the
CNN-steganalyzer is able to detect both cover and stego for 1388.pgm and 8873.pgm,
whereas it fails for the two other images. We are then left to provide a metric on images
which reflects the difficulty to perform the CNN classification task.

The first function we have investigated as possible metric is the image Shannon entropy
H(I) = −

∑
i pi log2(pi), a function that returns the number of bits which are necessary to

recompute the image, where pi is the normalized histogram of pixel values of image I.
On the BOSS database, the entropy ranges in [0.7, 8] and its distribution is represented
in Figure 4.7.

To check whether image entropy is a suitable measure of the difficulty to classify an im-
age, we have then plot for each steganalyzer the average detection error for all images I
of the database according to their respective entropy value H(I). In the case of SRM+EC,
200 classification were performed for each image thanks to maxSRMd2 for the embed-
ding algorithm MiPOD at payload 0.4 bpp in order to compute eSRM+EC(I), the average
testing error for image I when it is used in the testing set. We have also partitioned the
entropy interval [0.7, 8] into 25 equidistant classes. Figure 4.8(a) presents the resulting
scatter plot of (H(I), eSRM+EC(I)) pairs and the curve linking the mean error of each class,
whereas the bar displays its corresponding standard deviation. Similarly, Figure 4.8(b)
shows the scatter plot, curve, and error bars, for the CNN. In that case, eCNN(I) is the
average testing error obtained after training 12 independent networks. This low number
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Figure 4.7: Distribution of the BOSS database images with respect to entropy.

explains why, in comparison with the SRM+EC steganalysis context, the points are less
vertically spread. A first conclusion of these experiments is that the detection error of
SRM+EC seems to be quite independent of the entropy, whereas the one issued from
CNN seems to increase as the entropy does. However most of the images have an en-
tropy in [6, 8] (as can be seen in Figure 4.7) and it is hard to extract from Figures 4.8(a)
and 4.8(b) a specific behavior inside this interval.

As noticed previously, a key function in an embedding scheme is the distortion function ρ
that reflects the underlying structure of the image. A pixel in an easy-modeled area has
a high distortion value, while in a area showing large variations such as a textured area a
low value is obtained. Therefore, we have then studied whether a metric can be deduced
from the distortion function. Considering the same experimental context than for the en-
tropy function, on the one hand, Figures 4.9(a), 4.9(c), and 4.9(e) display the scatter plots,
the curve, and error bars for (ρU(I), eSRM+EC(I)), (ρH(I), eSRM+EC(I)), (ρM(I), eSRM+EC(I)) re-
spectively. On the other hand, Figures 4.9(b), 4.9(d), and 4.9(f) display the scatter plots,
the curve, and error bars for (ρU(I), eCNN(I)), (ρH(I), eCNN(I)), (ρM(I), eCNN(I)) respectively.

The scalar ρU(I) is the mean of all the matrices ρU(X) presented in equation (4.1), where
U means S-UNIWARD. The scalar ρM(I) has a similar definition for MiPOD. Finally ρH(I)
is not directly the mean of all the matrices ρH(X) of HILL. Due to its definition, some
extremely large values may indeed result from an extremely small denominator. This
would lead to a meaningless mean value. To avoid this behavior, extremely large values
are excluded from the mean computation.

By focusing on Figures 4.9(a), 4.9(c), and 4.9(e), it can be first deduced that the detec-
tion error of SRM+EC is quite independent of the value of ρ. Secondly, considering Fig-
ures 4.9(b) and 4.9(d), we can deduce that the CNN testing error continuously decreases
with respect to ρU(I) and with ρH(I). This behavior is not observed in Figure 4.9(f). The
good correlation between the prediction accuracy of the CNN for a given image I and the
value of ρ(I) can be observed in the two former cases but not in the last one. The func-
tions ρU and ρH are thus an indicator of the CNN accuracy. For instance, in Figure 4.6,
for the misclassified images we obtain ρU(1911) = 2.1 and ρU(3394) = 3.06, while for the
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(a)

(b)

Figure 4.8: Relation between testing errors and image entropy for embedding with MiPOD
at a payload 0.4 bpp with: (a) SRM+EC steganalyzer and (b) CNN-based steganalyzer.

well detected images we get ρU(1388) = 7.05 and ρU(8874) = 7.39. Thus ρU and ρH enable
to cluster the images in two groups which are in accordance with those noticed at the
beginning of the subsection.

4.5/ IMPROVING BLIND STEGANALYSIS IN SPATIAL DOMAIN

4.5.1/ TAKING THE BEST FROM CNN AND SRM+EC PREDICTIONS

We have shown that the lower the distortion function mean ρU of an input image is, the
more difficult it will be for the CNN to correctly detect whether the image is a cover or a
stego. Conversely, SRM+EC gives rather regular detection errors, without showing too
much sensitivity to ρU , being robust against the image structure. A look at Figures 4.9(a)
and 4.9(b) shows that we can take advantage from these different behaviors to improve
the detection performance on the BOSS base.
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(a) Detection error w.r.t image ρU value for SRM+EC. (b) Detection error w.r.t image ρU value for the CNN.

(c) Detection error w.r.t image ρH value for SRM+EC. (d) Detection error w.r.t image ρH value for the CNN.

(e) Detection error w.r.t image ρM value for SRM+EC. (f) Detection error w.r.t image ρM value for the CNN.

Figure 4.9: Relation between testing errors and distortion function mean.
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Figure 4.10: Average detection error of CNN-based and SRM+EC steganalyzers for Mi-
POD 0.4 bpp w.r.t ρU .

In fact, SRM+EC and the CNN can be combined due to complementary purposes. As
can be seen in Figure 4.10, in which both curves obtained for ρU are superimposed, from
the largest ρU value up to the point where both curves intersect the CNN is the most
competitive, whereas after, towards the lowest ρU value, it is SRM+EC which is clearly
the most accurate. Formally, this can be expressed as follows for an input image I, once
ρU(I) is computed: {

if ρU(I) < ρ∩U use SRM+EC prediction,
otherwise use CNN prediction

(4.5)

where ρ∩U corresponds to the intersection abscissa. For Figure 4.10, we have obtained
ρ∩U = 6.6. Let us emphasize that the same approach can be applied to S-UNIWARD and
HILL steganographic algorithms, leading to different values for ρ∩U .

Overall, the feature set generated by a spatial rich model is so large and diverse that it is
able to give predictions yielding almost the same level of accuracy, regardless of the pixels
modified by the embedding process. Moreover, the computing of the features is precisely
defined. Conversely, the CNN learns to extract a set of features to fulfill its classification
task according to the data given during the training step. Therefore, it will be well-suited
to process images having the same kind of embedding than the main trend in the training
data set. In other words, images having low ρU values are so underrepresented in the
BOSS database that they have a limited influence during the training process.

4.5.2/ DETECTION PERFORMANCE EVALUATION OF THE PROPOSAL

Table 4.3 presents in its last column the average detection error obtained for the three
steganographic algorithms. The first column gives the performance of SRM+EC com-
puted on images I such that ρU < ρ∩U , this last value is shown in the second column,
while the third column shows the results gained from CNN for the remaining images. We
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Table 4.3: Average detection error according to ρ∩U for different embedding payloads.

SRM+EC ρ∩U CNN CNN + SRM+EC
Payload (bpp) 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4
S-UNIWARD

40.08 20.01 9.2 7.1 23.36 8.25 38.06 14.82
non blind

S-UNIWARD
41 22.05 9.2 6.9 23.36 9.5 38.88 15.87

blind
MiPOD

42.13 23.89 8 6.6 25.84 9.26 37.82 15.65
non blind

HILL
43.48 24.51 8.9 6.6 21.88 9.78 40.24 16.22

non blind
HILL

44.30 25.41 8.3 6.6 27.72 9.78 40.64 16.61
blind

can observe that the proposal improves the detection performance for each embedding
algorithm. For a payload of 0.4 bpp, S-UNIWARD has the lowest error rate with 14.82%,
whereas for MiPOD and HILL we have values slightly below 17%. The lines labelled as
non blind correspond to situations where SRM+EC was trained with the same algorithm
than the one used to perform the embedding. Conversely, the lines denoted as blind
mean that SRM+EC was trained with MiPOD and then used to detect S-UNIWARD or
HILL. This also explains why for both blind and non blind situations the CNN gives the
same error when both cases use the same value for ρ∩U . For the lower payload of 0.1 bpp,
using T = 9 independent runs, the improvements provided by our method are also clearly
visible. These results are also somewhat surprising, since they are obtained by train-
ing only CNNs using images embedding hidden messages with MiPOD. This means that
even if each steganographic algorithm has its own distortion function, there is certainly a
high redundancy among the modifications they made on the same cover image.

A closer look on the performances of each steganalyzer on the subset of images it has
to classify according to ρ∩U explains why our proposal is relevant. Indeed, in comparison
with the performances shown in Table 4.2 we can remark that the SRM+EC error rate is
slightly worse than on the whole data set. Thus we take advantage from the low error rate
of the CNN at a price of a slightly worse misclassification by SRM+EC. Another point to
notice is the evolution in opposite directions of ρ∩U and payload values, which means that,
as expected, the scatterness of the modified pixels increases and thus is more difficult to
detect with the current CNN architecture. Nevertheless, our approach allows us to build a
competitive blind steganalyzer, which gives lower detection errors than CNN based only
or SRM+EC based only approaches.

4.6/ CONCLUSION

In this chapter, rather than designing a further new CNN-based steganalyzer for image
steganalysis in spatial domain, we have studied the CNN architecture proposed by Xu
et al., which, to the best of our knowledge, was the most competitive one compared
to the state-of-the-art conventional steganalyzer SRM+EC at that time. More precisely,
we have investigated when this CNN fails in order to propose a method allowing to im-
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prove the detection performance on the BOSS database for the three most secure spatial
steganography algorithms, namely S-UNIWARD, MiPOD, and HILL. Thanks to a Tensor-
Flow implementation, a careful experimental study allowed us to identify a metric strongly
correlated with the CNN classification performance. This metric consists in the mean of
all the elements in the cost matrix provided by the distortion function of the considered
steganographic algorithm for the input image. As the CNN and SRM+EC detection errors
evolve in different ways according to this metric function, we were able to define a reliable
criterion allowing to choose, for a given input image, which steganalyzer among the CNN
and SRM+EC will provide the most accurate prediction. The relevance of the criterion
has been assessed experimentally for the considered embedding schemes, regardless
of the payload value. Finally, the designed steganalyzer is not targeted at a particular
known steganographic algorithm, and consequently it can perform blind steganography
detection.





5
IMAGE DENOISING USING A DEEP

CONVOLUTIONAL ENCODER-DECODER
NETWORK WITH SKIP CONNECTIONS

This chapter briefly describes our most recent work on the design of a deep neural net-
work for an image restoration task. Image restoration is the set of all the image pro-
cessing algorithms that are applied in order to improve the visual quality from a human
observer point of view. Since an image can be degraded by many factors such as blur or
noise, image restoration encompasses different tasks among which deblurring, denois-
ing, super-resolution, and so on.

More specifically, we have focused our attention on image denoising whose objective
is to recover a clean image from its noisy version while preserving its original underly-
ing structure. Several reasons explain our interest in this problem. First, in many areas
images can be corrupted by various types of noise and therefore image denoising is a
prerequisite. For example, medical images like the 4D-CT considered in Chapter 1, or
ultrasound ones, are prone to noise and artifacts that can affect diagnostic confidence.
Remote sensing is another field for which image preprocessing is mandatory to improve
the quality of source images. Synthetic Aperture Radar (SAR) images are typically cor-
rupted by speckle noise generated by constructive and destructive electromagnetic wave
interference during acquisition. Second, we have in mind that traditional existing denois-
ing methods are usually specific for a kind of noise with a given level. Thus, as was the
case for image steganalysis, our final objective is to develop a neural network able to per-
form blind denoising, which means without any prior knowledge on the noise. Moreover,
denoising is a problem that has already been considered in our research team, since Per-
rot et al. [112] have worked on the design of a specific GPU-based high-speed denoising
filter for additive white Gaussian noise. Let us finally precise that the work we present
thereafter has not been published yet, is still in progress, and that only the great lines of
the neural network architecture will be given.

The proposal is presented throughout four sections. We start in Section 5.1 with a dis-
cussion on related existing denoising methods. An overview of the proposed deep neural
network design with its main characteristics is done in the following section. The possi-
ble choices for the loss function used to train the neural network, together with the one
we have defined, are also analyzed. Section 5.3 is dedicated to the first experiments,
showing the validity of the approach. Finally, some concluding remarks are given in Sec-
tion 5.4.

71



72 CHAPTER 5. IMAGE DENOISING USING A DEEP ENCODER-DECODER

5.1/ INTRODUCTION

In today’s digital world, an increasing amount of digital images is produced every day.
Nevertheless, the visual quality of an image is not guaranteed, since different sources
of noise can influence the pixel values. A main source is the acquisition process and
particularly the presence of defaults in the capturing device: noise can be produced by
the sensor, misaligned lenses, and so on, but noise can also be added during its edition,
storage or transmission. As a result different types of noise can appear in a digital image,
such as Gaussian noise, Salt-and-pepper noise, uniform noise, etc., and at different lev-
els. For an observer, the impact of noise can range from isolated speckles up to images
that seem to show nothing but noise.

To recover as precisely as possible a clean image y from a noisy version x that is the
outcome of an arbitrary stochastic corruption process n: x = n(y), an efficient image
denoising method is needed. Formally, the goal of image denoising is thus to find a
function f that approximates as well as possible the inverse function of n:

f = argmin
f

Ey ‖ f (x) − y ‖22 . (5.1)

It should be noticed that additive white Gaussian noise is often targeted, in which case the
corruption process can be rewritten as x = y +N(0, σ) where σ is the standard deviation.
This inverse problem is known to be ill-posed and therefore, from a Bayesian perspective,
it is important to exploit prior knowledge to constraint the solution space.

To solve this problem, there are two main categories of methods: model-based optimiza-
tion methods and discriminative learning methods. The objective of the former methods
is to directly solve the optimization problem, but as this problem is usually complex, they
are time consuming. On the other hand, discriminative learning methods try to learn a
set Θ of parameters defining a nonlinear function f̂ that approximates n−1 by minimizing
a loss function according to a data set that consists of clean-noisy images pairs. In that
case, the previous problem can be expressed as follows:

Θ = argmin
θ

1
N

N∑
i=1

‖ f̂ (xi) − yi ‖
2
2 (5.2)

where xi is the noisy version of yi and N is the size of the data set. Compared to model-
based methods, discriminative ones are less flexible since they are usually trained to deal
for a specific underlying model of corruption.

Typical examples of model-based methods are BM3D [113] and WNNM [114], while neu-
ral networks are representatives of the discriminative family. Obviously, even if the MLP
has been investigated [115], with the current rise of deep learning, deep neural networks
are now the most actively studied discriminative learning methods. One of the first deep
network proposal was made by Xie et al. [116] in 2012, it consisted in a stacking of auto-
encoders where each auto-encoder was trained one after the other (the hidden layer of
each auto-encoder is composed of sigmoidal neurons). In 2014, Long et al. [117] intro-
duced the Fully Convolutional Networks (FCN) for semantic segmentation, an architecture
that allows to produce segmentation maps whatever the image size and faster than with
patch classification approaches. Furthermore, this work has led to the widespread use
of deep networks in which the fully connected part is dropped, and thus reduced to the
convolutional part with a single feature map / image as output, for dense predictions.
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Image denoising is such a dense prediction task, whose objective is to recover for each
pixel its original gray level value. Consequently, among the various deep networks that
have recently been investigated to tackle the image denoising problem, almost all of them
have adopted the FCN paradigm. However, even if these networks belong to the same
family, differences among them can been observed. First, a FCN can be trained to recover
directly the clean image, like other discriminative denoising models such as a MLP, or
to predict a residual image that is subtracted from the noisy input one [118]. Second,
a central problem when using a CNN for image denoising (or segmentation) is due to
pooling layers. Indeed, a pooling layer usually performs a spatial downsampling and
as the input and output images must have the same size, it means that an upsampling
process is needed. On the one hand the pooling permits to enlarge the field of view, but
on the other hand the aggregation throws away useful spatial information. To address this
issue, several different architectures have emerged: architectures without pooling layers
and the encoder-decoder architecture.

A first example of architecture for image denoising that only has convolutional layers is
the deep network called DnCNN (Deep network CNN) proposed by Zhang et al. [118]
considering a residual learning formulation. The CNN is composed of layers with three
different convolutional blocks using a unique convolution kernel size of 3 × 3: Convolu-
tion+ReLU for the first layer, Convolution+BatchNorm+ReLU in the intermediate layers,
and only Convolution in the final layer. It has a receptive field whose size depends on the
network depth ((2d + 1) × (2d + 1) where d is the depth) and which is correlated with the
effective patch size of other denoising methods. In fact, most of the denoising methods
such as BM3D, WNNM, MLP, and so on operate on patches. The authors have thus cho-
sen to increase the receptive field through a large depth, a choice that is more popular
than the use of less layers with increasing kernel sizes due to the computational overhead
resulting from a larger number of parameters to optimize. The networks of 17 and 20 lay-
ers that they trained for additive Gaussian denoising, respectively for a specific noise
level and for blind denoising (unknown noise level), outperformed slightly both BM3D and
WNNM on the BSD68 data set of grayscale images. The choice of these depth values
is issued from an analysis of the effective patch size of other denoising methods (BM3D,
WNNM, etc.).

A recently proposed alternative to an increased depth or to increasing filter sizes is the
use of dilated kernels, also known as atrous convolution. Indeed, convolutional layers
that only use 3× 3 kernels but with multiple atrous rates perform an analysis of the image
at multiple scales without needing a large depth. Figure 5.1, which can be found in
[119, 120], shows the principle of atrous convolution with three different rates. It can be
clearly seen that the model’s field-of-view becomes larger as the rate value increases.
This approach has also been studied by Zhang et al. in another work [121], leading to
denoising performances similar to that of the first-mentioned work.

Zhang et al. have finally introduced another architecture [122] with the objectives of
being able to handle a wide range of noise levels and spatially variant noise through the
definition of a noise level map, and also to provide a faster execution than BM3D. This
architecture, called FFDNet for fast and flexible denoising convolutional neural network,
consists of a CNN similar to the one of DnCNN, but that does not predict the noise.
The CNN receives as input four sub-images obtained from the initial input image using
a reversible downsampling operator (factor is set to 2) and a tunable noise level map.
As output it produces four denoised sub-images which are then upsampled to recover the
final output image. For Additive White Gaussian Noise (AWGN) removal, the experiments
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Figure 5.1: Atrous convolution with kernel size 3 × 3 and different rates.

show that DnCNN is better for low noise levels (σ ≤ 25), whereas for larger values FFDNet
becomes gradually slightly better with the increase of noise level. This result is all the
more interesting as it is the version of DnCNN trained for a specific noise level that is
considered, whereas FFDNet is trained in a blind context with noise level σ ∈ [0; 75].

An encoder-decoder is quite different. First of all, the encoder consists of convolutional
layers that successively downsample the input image into small abstraction maps from
which the noise is removed as the process goes deeper. The decoder is then fed by
the final abstraction map in order to reconstruct a clean image thanks to deconvolutional
layers. The reconstruction by the decoder is clearly the most difficult part since image
details might be lost during the features extraction process performed by the encoder. To
mitigate this problem, a common approach is to adopt the skip connection method. In this
work we have considered an encoder-decoder architecture with such connections and its
broad outlines are given in the following section.

5.2/ THE PROPOSED DEEP NETWORK FOR IMAGE DENOISING

5.2.1/ NETWORK ARCHITECTURE

Our network is similar to a generator architecture introduced by Isola et al. [123] in their
investigation of conditional adversarial networks to solve image-to-image translation prob-
lems, an architecture which is itself an adaptation of one issued from [124]. The genera-
tor we consider is the U-Net [125] version corresponding to an encoder-decoder having
skip connections between mirrored layers in both encoder and decoder stacks, as shown
in Figure 5.2. The encoder extracts salient features preserving the detailed underlying
structure of the image, while simultaneously removing the noise, whereas the decoder
produces a clean version of the input image by recovering successive image details as
it progresses through its layers in a bottom-up way from the bottleneck layer of the en-
coder. As can be seen, each skip connection allows to directly shuttle the information
from an encoder layer to its corresponding decoder one, and this is appealing since the
input noisy image and output clean version share large parts of the low-level information
like the location of prominent edges. In fact, skip connections allow to remember different
levels of details that are useful to reconstruct the final output image.
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Symmetric skip connections are very interesting because they facilitate the training and
improve image recovery. On the one hand, skip connections allow to solve the vanishing
gradient problem by backpropagating the signal directly and, on the other hand as both
input and output images have the same content, the recovery of the clean version can
benefit from the details appearing in the corrupted version. As a consequence, better
results are usually obtained with skip connections.

From an architecture point of view, following the specification given in the appendix of
[123], the encoder is almost exclusively composed of Convolution-BatchNorm-ReLU lay-
ers, a typical choice in CNN, except the first layer that do not undergo the batch normal-
ization. Batch normalization [109] is performed because it improves the training (faster
and better denoised images) by allowing a stable distribution of nonlinearity inputs. Let
us notice that, as illustrated in the previous section, this kind of convolutional block is also
the one used in many FCN that do not have an encoder-decoder architecture. For its
part, the decoder consists of a mixing of this kind of layer and a variant of it integrating a
dropout rate of 50% before the ReLU activation. Neither pooling nor unpooling operations
are used, because aggregation induces some losses of details which, in the context of
image denoising, can be awkward. Since convolutions and deconvolutions use 4 × 4 ker-
nels with stride 2, each encoder and decoder layer will produce feature maps which are
downsampled and upsampled, respectively, by a factor of 2. The last top decoder layer is
mapped back to the output clean image with a deconvolution followed by a tanh activation.

5.2.2/ LOSS FUNCTION

A factor that has a major impact on the obtained neural network is obviously the loss
function used to drive the training process. However, despite its importance, the choice
of this function is hardly discussed in most of the research works studying the design of
neural networks for solving image processing problems. Indeed, usually the choice simply
consists in deciding whether to use the L1−norm or the L2−norm, the latter being the most
popular option, and besides, we already used it in the introduction section. However, even
if properties of the L2−norm (or Euclidean norm) explain why it is the default choice, in

Figure 5.2: The U-Net encoder-decoder architecture.
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the case of image restoration tasks and particularly for image denoising it is disputable.
First, as noticed at the beginning of this chapter, the key objective of image restoration is
to improve the visual quality from a human observer’s point of view and the L2−norm is
clearly not correlated with this desirable objective. Second, it is known that the Euclidean
metric is optimal when white Gaussian noise is encountered, but for other noise schemes
alternative metrics should be considered [126]. Therefore, a loss function that is based
on a metric reflecting the visual quality should be investigated.

Such an investigation can be found in [127], a paper in which the authors compared
several losses considering two state-of-the-art metrics for image quality: the Structural
SIMilarity (SSIM) index [128] and the MultiScale Structural SIMilarity (MS-SSIM) index
[129]. They compared both norms, SSIM, MS-SSIM, and their own loss function that is a
combination of MS-SSIM and L1−norm on different image restoration tasks, among which
joint denoising and demosaicking of color image patches (31 × 31 pixels) using a FCN of
three layers with PReLU activation in the first two ones [130]. We independently came up
with the same idea to investigate a loss function that combines the losses LL1 and LS S IM,
denoted by LL1+S S IM in the following. Note that the work presented in [127] focuses on
the analysis of loss functions and not on the design of a FCN for image denoising.

Formally, LL1 and LS S IM losses are, respectively, defined by:

LL1(x, y) =
1
|x|

∑
p∈x

|x − y| (5.3)

and

LS S IM(x, y) = 1 −
1
|x|

∑
p∈x

2µxµy + C1

µ2
x + µ2

y + C1
·

2σxy + C2

σ2
x + σ2

y + C2
, (5.4)

where x is the noisy version of the clean image y and µ, σ, are means and standard de-
viations that depend on pixel p. Both are computed using a Gaussian filter with standard
deviation σG. C1 = (K1L)2 and C2 = (K2L)2 are two constants, where L is the dynamic
range of the pixel values (1 in our case due to normalization in [0; 1]), K1 � 1 and K2 � 1.
In fact, the SSIM index is a similarity measure that combines three comparison functions
measuring different kinds of changes between images: luminance, contrast, and struc-
ture, but thanks to a simplification it can be expressed as a product of two terms.

5.3/ EXPERIMENTAL RESULTS

5.3.1/ DATA SET AND NETWORK TRAINING

For image denoising, images from the Berkeley Segmentation Data Set (BSD or BSDS)1

[131, 132] are widely used for training and testing. For example, in [133] they used the
300 images from BSDS300 to generate patches for training and 200 images for testing
(the 200 fresh images from BSDS500). Similarly, Liu et al. [134] evaluated the denoising
performance of different methods, in comparison with their proposal called Wide Inference
Networks (WIN), on the same test set called BSD200. In [118], Zhang et al. followed
[135] and hence trained their image denoising model DnCNN using 400 BSD images
considering three different noise levels. More precisely, for each noise level they cropped

1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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128 × 1, 600 patches of size 40 × 40 from this set of 180 × 180 pixels images. In [122], they
used a similar approach to train FFDNet for AWGN denoising in grayscale images, but
with a larger patch size (70 × 70). For performance evaluation they considered images
from two sets: 68 natural images from BSD data set and a collection of 12 images,
respectively named BSD68 and Set12. Apart from Set12, smaller and larger collections
of 5 and 14 images are also sometimes chosen. PSNR results of BSD68 data set are
usually given and thus allow to compare different approaches between each other.

However, it is admitted that the training of deep networks can benefit from a large data
set and therefore the question of extending the routinely used small BSD training set
arises. Hence, in their most recent works [121, 122], Zhang et al. not only considered
400 images from BSD, but also selected 400 images from the validation set of ImageNet
database and 4, 744 images of Waterloo Exploration Database [136]. According to their
experimental study in [121], the training with an enlarged data set of almost 5, 500 images
does not improve the PSNR results on BSD68, despite a slight improvement observed for
other testing images. In a first evaluation we do not consider the BSD data set, neither for
training, nor for testing. We rather use the same images than for the image steganalysis
problem described in the previous chapter. Thus, we have used as data set a subset of
the 10, 000 gray images of 512×512 pixels provided by the BOSS database [85] and we will
only evaluate the proposed approach for additive white Gaussian and speckle denoising.
Actually, the first 3, 000 images of the database are used, with 2, 800 images for training
and the 200 remaining ones for testing. Let us emphasize that the results we present are
preliminaries whose objective is to show in a first step the validity of our proposal.

The proposed network is trained during 50 epochs for a specific type of noise, using the
loss function LL1+S S IM and the Adaptive moment estimation (Adam) optimizer [137] that
computes adaptive learning rates for each parameter. We have replaced the traditional
stochastic gradient descent (SGD) by Adam due to the observation of Mao et al. [133] that
it provides a faster training convergence of their encoder-decoder networks. Contrary to
the CNN trained in the previous chapter for image steganalysis, up to now the optimization
process is not iterated over mini-batches because the tuning of the mini-batch size has
not been completed. The computations are still completed on a NVIDIA Tesla Titan X
GPU and a typical training for a given noise level takes about 5 hours.

5.3.2/ DENOISING PERFORMANCE

A measure used to assess the denoising performance of an approach is the Peak Signal-
to-Noise Ratio (PSNR):

PS NR(y, x) = 10 · log10

(
2552

mse2

)
(5.5)

where x is the noisy observation of the clean image y and mse2 is the mean squarred error.
Let us remark that PSNR (dB) is a standard performance indicator even if it is known to
be a poor quality metric when the purpose is to compare the images as perceived by the
human visual system. Indeed, as demonstrated in [128], a high PSNR value and good
visual quality do not necessarily go together. PSNR variants reflecting visual perceptual
functions exist to overcome this drawback, but it is rather the simultaneous taking into
account of PSNR and mean SSIM index which is a good indicator of the visual quality:
when both metrics have high values, the quality is regarded as high. Thereafter are
presented some experimental results obtained for AWGN removal with different noise
levels and speckle noise removal.



78 CHAPTER 5. IMAGE DENOISING USING A DEEP ENCODER-DECODER

Table 5.1: Average PSNR (dB) / SSIM obtained for AWGN and speckle according to the
chosen denoiser.

AWGN LL1+S S IM

σ
Noisy input

BM3D
Encoder

DnCNN
images decoder

10 28.37 / 0.5798 36.97 / 0.9282 36.07 / 0.9273 37.23 / 0.9304

30 19.17 / 0.2002 31.02 / 0.8284 32.06 / 0.8626 31.11 / 0.8334

50 15.10 / 0.1052 27.56 / 0.7591 29.97 / 0.8181 27.45 / 0.7613

70 12.64 / 0.0664 24.97 / 0.7091 28.48 / 0.7865 24.55 / 0.7041

80 11.69 / 0.0545 23.76 / 0.6882 27.99 / 0.7743

Speckle
10.24 / 0.1441 27.86 / 0.7852

L = 1

QUANTITATIVE RESULTS

Table 5.1 shows the quantitative results gained for AWGN, including noise levels
σ ∈ {10, 30, 50, 70, 80}, and speckle reduction on the test set of 200 images. The speckle
noise is modeled as a multiplicative noise that follows a Gamma distribution Γ(L, 1) of unit
mean and variance 1

L , where L = 1. In each case are given the average PSNR and SSIM
values of the noisy input images, the corresponding outcomes produced by BM3D, and
those issued by the proposed encoder-decoder and DnCNN. The results of DnCNN have
been obtained by using directly network models provided by the authors in the GitHub2

of their Matlab implementation. Fourteen models are available, each trained for a pre-
cise noise level (the values of σ are regularly distributed in |10; 75]). For the speckle
case, the BM3D values have not been computed since the corresponding SAR version of
BM3D should have been used, while DnCNN is dropped due its focus on Gaussian de-
noising. As can be seen, the encoder-decoder can achieve satisfactory denoising results
and outperforms almost systematically BM3D and DnCNN. Indeed, except for AWGN
with σ = 10, in which case the encoder-decoder gives high values but slightly lower than
those of BM3D and DnCNN, better PSNR and SSIM results are obtained thanks to the
proposed deep neural network. Moreover, the more noisy the images, the more advan-
tageous it is to use the encoder-decoder to recover clean images. Finally, we can also
notice that the neural network is able to deal with AWGN and speckle noise, once trained
on the targeted noise, an important feature which is looked for in the perspective of blind
denoising. Overall, the residual learning strategy adopted by DnCNN seems interesting
for low noise levels, but as the noise increases the reconstruction of a clean image as
performed by the proposed network is clearly more appropriate.

To further highlight the suitability of the encoder-decoder, it might be interesting to have
an idea of the denoising performance given by other denoising methods. Therefore, in
Table 5.2 are shown the behaviors observed by Zhang et al. on BSD68 set [122] in the
case of AWGN for BM3D [113], WNNM [114], MLP [115], DnCNN, and FFDNet. It can
be seen that both deep networks, DnCNN and FFDNet, outperform the other methods.
Furthermore, interestingly, as noticed in Section 5.1, DnCNN is only better than FFDNet
for low noise levels (σ ≤ 25), a behavior similar to the one shown when compared to
the proposed encoder-decoder. Even if these results are obtained on a different data
set, considering the performances of BM3D and DnCNN in both tables as reference,

2https://github.com/cszn/DnCNN

https://github.com/cszn/DnCNN
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Table 5.2: Average PSNR (dB) obtained by Zhang et al. [122] for AWGN on BSD68
according to the chosen denoiser.

AWGN
BM3D WNNM MLP DnCNN FFDNet

σ

15 31.07 31.37 - 31.72 31.63

25 28.57 28.83 28.96 29.23 29.19

35 27.08 27.30 27.50 27.69 27.73

50 25.62 25.87 26.03 26.23 26.29

75 24.21 24.40 24.59 24.64 24.79

the proposed encoder-decoder appears at a first glance as a valuable competitor for
state-of-the-art denoising approaches. Obviously, further experiments and particularly an
evaluation on BSD68 are required to confirm this feeling.

In addition to the previous experiments, we have also completed a preliminary evaluation
of the encoder-decoder blind denoising ability for AWGN with unknown noise level. To
train the network, the first thousands image from data set are used, where for each image
its corresponding noisy versions with σ = 10, 30, 50, and 70 are computed. Thus, the
training data set consists of images corrupted with four different noise levels and has a
size of 4, 000 images. As the training set size is increased by 43%, a similar increase is
obtained in the computation time taken to complete the training that get from 5 hours to
7.2 hours. This AWGN blind denoiser yields the following results for noise level σ = 80: a
PSNR of 27.50 dB and 0.7564 for SSIM value. Obviously, these values are less than the
ones obtained with the network trained specifically for σ = 80 shown in Table 5.1. But
they are slightly better than those given by the network trained only for σ = 70: a PSNR
of 27.33 dB and 0.7542 for SSIM value. These results are encouraging but a deeper
investigation is needed to confirm that the proposed network can be suitably trained to
deal simultaneously with different unknown noise levels.

VISUAL RESULTS

Figures 5.3-5.4 illustrate the visual results of BM3D and the proposed deep network,
considering a same image, for AWGN with noise levels σ = 30 and 70, respectively. It can
be seen that the encoder-decoder preserves sharp edges and finer details as the noise
level increases. This point is clearly highlighted through the comparison of Figures 5.4(c)
and 5.4(d), since the clock on the left shaded part of Big Ben appears far more blurry
with BM3D. Furthermore, even if for noise level σ = 30 the PSNR result is better for
BM3D, the neural network yields a image with a better visual quality: a look on the cloudy
upper left part in the images (Figures 5.3(c) and 5.3(d)) is convincing in our opinion. This
observation is further supported by the SSIM value which is equal to 0.9021 for the clean
image recovered by the encoder-decoder, whereas the one for BM3D is equal to 0.8929.

Figure 5.5 shows the denoising results on two different images with noise level 70 given
by the encoder-decoder and DnCNN. In both cases the proposed network recovers a
clean image with far more details and a better visual quality. This is again confirmed by
the higher values of PSNR and SSIM: for Big Ben the values obtained from the image
recovered by the encoder-decoder are, respectively, 25.01 dB and 0.8204 versus 24.11 dB
and 0.7875 for DnCNN, while for the image with the bird they are 21.86 dB and 0.7162
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versus 21.24 dB and 0.6547. In the case of the speckle noise presented in Figure 5.6,
despite the huge corruption interesting details are bring out, especially in the shaded part
of the building.

5.4/ CONCLUSION

In this chapter, a fully convolutional network that consists in an encoder-decoder with
skip connections has been proposed for image denoising. The great lines of the network
have been presented and the choice of the loss function used to carry out the training
discussed. The ultimate goal is to have an effective deep blind denoiser, able to handle
different kinds of noise and without any prior knowledge on the noise level. Even if this
work is still in progress, the first preliminary results showed that the network can remove
additive white Gaussian noise and speckle noise, provided that it is suitably trained for
the targeted noise. While we have demonstrated promising results, further experiments
are needed to go towards fully blind denoising and to compare it with other approaches.



5.4. CONCLUSION 81

(a) Ground-truth (b) Noisy - σ = 30 (18.83 dB)

(c) BM3D (29.54 dB) (d) Proposed deep network (29.06 dB)

Figure 5.3: AWGN denoising results (PSNR) of one image with noise level σ = 30.

(a) Ground-truth (b) Noisy - σ = 70 (12.46 dB)

(c) BM3D (24.36 dB) (d) Proposed deep network (25.01 dB)

Figure 5.4: AWGN denoising results (PSNR) of one image with noise level σ = 70.
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(a) Ground-truth (b) Noisy (c) Proposal (25.01 dB) (d) DnCNN (24.11 dB)

(e) Ground-truth (f) Noisy (g) Proposal (21.86 dB) (h) DnCNN (21.24 dB)

Figure 5.5: AWGN denoising results (PSNR) of two images with noise level σ = 70.

(a) Ground-truth (b) Noisy - L = 1 (7.18 dB)

(c) Proposed deep network (24.54 dB)

Figure 5.6: Speckle denoising results (PSNR) of one image with L = 1.



6
ECHO STATE NETWORKS-BASED

RESERVOIR COMPUTING FOR MNIST
HANDWRITTEN DIGITS RECOGNITION

In this chapter we will present an application of Reservoir Computing (RC), a brain-
inspired paradigm quite different from learning point of view. Two considerations moti-
vated this work. First, we wanted to study a concept which has been implemented in
photonic hardware by colleagues of the OPTICS department from the FEMTO-ST Insti-
tute and, second, to apply it to a computer vision problem. Therefore, in collaboration with
Raphaël Couturier we decided to co-supervise a MSc student in order to investigate the
ability of Echo State Networks (ESN), a machine learning implementation of Reservoir
Computing, to classify the digits of the MNIST database.

This work has led to a conference paper [138] which is summarized in this chapter. In
a first part (Section 6.1) we give a short introduction to Reservoir Computing, then the
two next sections describe, respectively, the ESN implementation of RC (Section 6.2)
and the study we made on the classification of digits with it (Section 6.3). Finally we
conclude in Section 6.4. Even if the studied ESNs are not able to outperform state-of-
the-art convolutional networks, we show that they can reach low error thanks to a suitable
preprocessing of images and use of the reservoir.

6.1/ INTRODUCTION

In Part I and in the previous chapters we have presented research works considering
almost exclusively feedforward neural networks, but such networks are not designed to
naturally deal with random variables whose samples are not independently and identically
distributed. For tasks that exhibit a temporal dynamics within the data, such as speech
recognition or time series forecasting (for example financial market time ones), Recurrent
Neural Networks (RNN) are more suited to capture temporal correlations thanks to their
memory capacity. Unfortunately, even if different approaches are available for training
standard RNNs, like the gradient-based method BackPropagation Through Time (BPTT)
which unfolds the recurrent network in time into a feedforward one trained using the back-
propagation process, training is usually a difficult task. In that case the recurrent network
can also be seen as a deep network with shared synaptic weights. Among the reasons
why the training is hard are stability ones due to bifurcations in the course of learning

83
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[139] and the handling of long-term dependencies as shown by Bengio et al. in [140]. In
fact, the former work has shown that the longer the temporal span of dependencies the
less efficient the gradient descent is, due mainly to vanishing and exploding gradients.

Fortunately, over the past many years several key improvements have led to an increasing
use of RNNs with incredible successes in various real applications. A first and major
example of architecture enhancement is the kind of RNN called Long-Short Term Memory
(LSTM) networks originally proposed by Hochreiter and Schmidhuber [141], which has
received a lot of interest leading to different variants (see [142] and [143] for comparative
surveys) being now widely used. LSTM networks usually outperform classical RNNs and
Hidden Markov Models, being able to learn long-term dependencies using a new structure
called a memory cell. The key component is a gating mechanism that is embedded
in each memory cell and permits to control the evolution of its content. In comparison
with classical RNNs the benefits of this gating mechanism is twofold. First, the gates
can prevent modifications for multiple time steps and thus preserve the information and
propagate errors for a longer time. Second, by allowing a independent control of the way
information flows in, out, and stays in a memory cell, the gates can be trained to focus on
some parts of the input signals. Overall, LSTM networks address the problem of vanishing
gradients in a way that can be seen similar to residual networks. In this chapter, we study
another approach to solve this problem, namely the Reservoir Computing concept [69,
70] which overcomes the problem of vanishing gradients by giving up the training of the
neural network’s recurrent part. The key idea in RC is to extract features from time series
using a high-dimensional dynamical system that is randomly initialized.

Originally, Reservoir Computing referred to Echo State Networks [144, 145], a machine
learning method, and to Liquid State Machines (LSM) [146] in computational neuro-
science. In the machine learning context, the key idea can be formulated as feeding
a large and sparsely connected recurrent network, called the reservoir, with input data to
produce nonlinear signals among the neurons, which are then combined linearly together
in the output layer to obtain, after training, the expected outputs. The training of the RNN
is thus not only easier, since it is focused on the output layer, but also because it results
in solving a system of linear equations. Indeed, the projection in a higher-dimensional
space done by the reservoir is supposed to give such a rich representation of the history
of the inputs that a simple linear readout is sufficient to obtain relevant outputs after train-
ing. More recently, the effectiveness of deep networks with the rise of deep learning has
resulted in deep reservoir computing, which consists in the stacking of several reservoirs.
A deepESN model has been thus introduced in [147, 148] and its ability to perform a hier-
archical processing of temporal data studied. The extension of the Echo State Property,
the key property in ESNs, has been particularly discussed in this context.

Another great interest of RC is the possibility of a hardware implementation, providing
thus a platform for neuromorphic computing [149]. In fact, such neuromorphic processors
are very appealing because they can reduce the power consumption and process the
input data at high-speed. Different physical systems implementing reservoir computing
have been already proposed, from concept proof one which uses water ripples [150] to
more evolved platforms using optoelectronic [151, 152] and fully optical devices [153]. A
review of the two main approaches for the design of reservoir computer in optics, namely
spatially extended photonic networks and the delay-line based RC, is made in [154].

We have started our research works on RC by investigating a delay-line approach, namely
the optoelectronic implementation proposed by Larger et al. in [151], and more particu-
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larly its computer simulation with an Ikeda type nonlinear delay differential equation. The
result of this first work, a parallel version using the Message Passing Interface for the
communication, allowed to obtain the same classification performance on the considered
speech recognition problem but with a reduced computation time. In this chapter we will
not develop this first work, but rather present another one that studies the use of ESNs
for the classification of images representing handwritten digits, and thus show that they
can fulfill computer vision tasks.

6.2/ ECHO STATE NETWORKS-BASED RESERVOIR COMPUTING

Let us start with the description of the ESN model and then briefly discuss the Echo State
Property (ESP), which is the property having a major impact on the model accuracy.

6.2.1/ ECHO STATE NETWORK MODEL

The original ESN basic model has been proposed by Herbert Jaeger in [144]. Formally,
the update equation of the reservoir’s state vector xt for an input signal ut, which is a
Nu-dimensional vector, is typically defined by:

xt = f
(

in
W ut + Wxt−1

)
, t = 1, ...,T (6.1)

where xt ∈ RNx denotes a vector of reservoir neuron activations at discrete time t for a
reservoir consisting of Nx interconnected neurons, f is a Lipschitz continuous sigmoidal

function, while
in
W∈ RNx×Nu and W ∈ RNx×Nx are the input and reservoir weight matrices

respectively. The reservoir usually starts with a null state (x0 = 0). The output vector, or
readout, ŷt is then obtained thanks to a linear combination of neuron activations:

ŷt = g
(out
W xt

)
, (6.2)

where
out
W∈ RNy×Nx , with Ny the number of readouts, is the output weight matrix and g is

the output activation function (usually the identity or a sigmoid). This basic model can
be extended to include bias weights and feedback between the output signal and the
reservoir, as follows:

xt = f
(

in
W ut + Wxt−1+

o f b
W yt−1+

bias
W

)
, t = 1, ...,T (6.3)

where
o f b
W ∈ RNx×Ny is the weight matrix of the connections between the outputs and the

reservoir’s neurons. Feedback connections are used in a mode called free-run where the
ESN is used to generate an output signal one step ahead. The matrix

bias
W ∈ RNx represents

the biases of the reservoir neurons.

Skip connections, which skip the reservoir and connect directly the inputs to the outputs,
can be added, leading to the following expression for the readout:

ŷt = h
(out
W [xt; ut]

)
, which becomes for linear outputs ŷt =

out
W [xt; ut]. (6.4)
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Figure 6.1: ESN architecture: the inputs ut are connected to a recurrent network of sig-
moid neurons, while the output vector ŷt is a combination of these neurons.

The output weight matrix is then
out
W∈ RNy×(Nx+Nu) and [· ; · ] stands for a vertical vector con-

catenation. Figure 6.1 gives an architecture overview of the ESN basic model, showing
that the input signal is first projected in a space of higher dimension thanks to the reser-
voir (Nu << Nx) from which the outputs are then extracted. Given an input signal, the
reservoir’s role is thus twofold: perform a nonlinear expansion in a higher dimensional
space, and a memory.

A model named Leaky-integrator ESN (Li-ESN) has been proposed later in [145], in order
to adapt the network to the temporal characteristics of the target signal yt. In this model,
which is popular due to the good results obtained in practice, each neuron takes into
account its weighted past state and has thus a more smooth state evolution. The dynamic
of a Li-ESN in continuous time is defined by:

ẋ =
1
c

(
−ax + f

(
in
W u + Wx+

o f b
W y

))
, (6.5)

where c > 0 is a time constant shared by all neurons, a > 0 is the leaking rate of the neu-
rons, and f is a sigmoidal function (typically tanh(·)). Then, if we discretize the previous
equation with a time step δ and a sampled input signal utδ, the reservoir state is governed
by the following recurrent equation:

xt+1 =

(
1 −

aδ
c

)
xt +

δ

c
f
(

in
W u((t+1)δ) + Wxt+

o f b
W yt

)
(6.6)

and by setting δ = c we obtain finally the Li-ESN reservoir update equation:

xt+1 = (1 − a)xt + f
(

in
W ut+1 + Wxt+

o f b
W yt

)
, (6.7)

where a > 0 is the leaking rate. This parameter allows to control the feedback of past
states and the reservoir’s dynamics (the lower the value of a, the slower the dynamics).

The ease of training, which is to minimize the squared error between the output ŷt and the
target signal yt, comes from the fact that it consists in the computation of a linear regres-

sion on the weight matrix
out
W . Therefore, with X ∈ RNx×T the matrix containing all reservoir

states during training phase, and Y ∈ RNy×T the matrix containing the corresponding out-
puts (with Nx < T ), the training is defined by the following equation:

out
W X = Y. (6.8)
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To compute
out
W , Ridge Regression (or Tikhonov regularization) [155] is commonly used in

order to bound the amplitude of output weights, and thus reduce the sensibility to noise
and overfitting [156]:

out
W= YXT (XXT + βI)−1 (6.9)

where β is the regularization coefficient and I is the identity matrix. The optimal value
for β depends on the reservoir instance and the training data. Another way to solve
Equation (6.8), which is frequently chosen (its offers in particular high numerical stability),
is to use the Moore-Penrose pseudoinverse X+:

out
W= YX+. (6.10)

The two previous approaches to calculate
out
W are used in a offline training context. That

means that the training is done in one shot by concatenating in matrix X reservoir states
and in Y the associated target outputs for an input signal ut.

Considering the previous model, the Reservoir Computing method with ESN given in
[144] consists of the following steps:

1. Generate randomly an input matrix and large reservoir (
in
W,W,a);

2. Compute reservoir states for each time step using the input signal ut and save them
successively in matrix X;

3. Compute the output matrix
out
W from states collected in step 2 with a linear regres-

sion method, minimizing the mean squared error (MSE) E(yt, ŷt) between the output
signal ŷt and the target signal yt;

4. Use the trained network on a new input signal ut and computes the output ŷt with

the
out
W output matrix.

For a given task, several parameters have an impact on the ESN performance: the reser-
voir size, its sparsity, and so on. An important parameter is the reservoir spectral radius,
because it was first used to define a necessary condition ensuring the so-called Echo
State Property in most of the situations. Indeed, the ESP which can be formulated as:
past states xt and past inputs ut should both affect the future states xt+k in a way that is
gradually vanishing with k, should be satisfied to have a working ESN-based RC method.
In fact, the state of the reservoir should be uniquely defined by the fading history of the
input. In other words, for a long enough input, the reservoir state should not depend on
the initial conditions that were before the input. Intuitively, one also understands that two
close input signals must not lead to very different reservoir states, otherwise the ESN
would be useless.

6.2.2/ ECHO STATE PROPERTY

As said above, an ESN should have the ESP in order to provide suitable performance.
Therefore, it is important to have, for a given ESN setup, a practical way to estimate if
the ESP holds. Several research works have investigated the formulation of conditions to
get the ESP, for example in [70] and more recently in [157], leading to a sufficient and a
necessary condition related to ESP [158]:
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• Sufficient condition: if σ(W) < 1, where σ(W) = ρ(WWT )
1
2 is the largest singular

value of W, then the ESP is satisfied for every input;

• Necessary condition: ρ(W) ≤ 1 is necessary to have the ESP for all inputs.

Even if the necessary condition only applies to autonomous systems that contain the zero
input sequence (ut = 0), in practice the reservoir weight matrix W is usually generated so
that it fulfills this condition as follows:

1. Generate a random matrix W;

2. Divide W by the spectral radius ρ(W).

Sometimes to improve the ESN performance the reservoir matrix must be set such that
its spectral radius is above 1, which means that the ESP is no more ensured for all inputs.
Even if no method to create an optimal reservoir for a given task is currently available,
some conditions and measures have been proposed, most of them based on the border
of chaos and the Lyapunov exponent [157].

The border, or edge, of chaos, is a region of parameters of a dynamical system in which
the neural network operates at the limit between ordered and chaotic behaviors. There
is no proof that being between ordered and chaotic regimes is always the best choice,
but since it has been shown that for some applications requiring a lot of memory it is
the optimal regime for a RNN [159], a common method is to set W so that its spectral
radius is slightly below one. Nonetheless, setting systematically W such that the reservoir
dynamics is at the border of chaos is questionable, because ESNs with small spectral
radius can also perform well.

6.3/ APPLICATION ON THE MNIST PROBLEM

The MNIST problem is classically used as a benchmark for evaluating the performance
of a classifier in the field of machine learning. It is a classification problem where the
objective is to recognize a handwritten digit 0 to 9 (problem with ten classes) in a small
grayscale image. The data set consists of 60,000 training images and 10,000 testing
images, with the corresponding label data. Currently, the best-known classifier is a com-
mittee of 5 convolutional neural networks [64] (final prediction obtained by averaging the
output probabilities of the networks) with a final error rate of 0.21%. Each CNN is com-
posed of two convolutional layers having, respectively, 32 and 64 feature maps, followed
by a fully connected layer of 150 ReLU neurons sparsely connected with DropConnect,
while the output prediction vector is given by a softmax classification layer.

In the following subsections we first present how the network is fed with an input image
to be classified. Then, different image transformations and the classical output layer are
described. Finally, the classification performance given by several reservoir setups are
compared between each other and with other machine learning approaches.

6.3.1/ ENCODING IMAGES AS TEMPORAL SERIES

Each image of 28× 28 pixels is first normalized by scaling the pixel values to [−1, 1], lead-
ing to the matrix In ∈ RNi×Ni where n is the image index and Ni = 28 is its size. Then, as



6.3. APPLICATION ON THE MNIST PROBLEM 89

(yk)0≤k≤9

(ui)0≤i≤27

Figure 6.2: Inputs and outputs of a ESN for image classification, with Ni = 28.

an ESN processes time series, we must transform such a image into a temporal signal.
Therefore, a spatial dimension is converted to a temporal one, passing thus images col-
umn by column or row by row according to the chosen spatial dimension. Considering
a column-wise feeding, or horizontal scanning, we have Nu = Ni inputs connected to the
reservoir and each input satisfies (ui)t = (In)i j, where t = n × Ni + j. That means that the
i-th reservoir input receives, at time step t, the value of the (i, j) element of the array In

representing the pixel in position (i, j). The underlying idea is to store an image in the
reservoir one column after another, provided that the reservoir has enough memory for
the complete image.

An image is thus seen as a set of Ni time series of length Ni, and the images are presented
one after another. The output binary vector y, which identifies the represented digit by a
single one in the vector component having for index the digit value, is transformed in a
similar way in ten time series of length Ni. Figure 6.2 illustrates this temporal encoding of
an image (ut = (ui)t, with 0 ≤ i ≤ 27) and its associated label (yt = (yk)t, with 0 ≤ k ≤ 9), we
can see that the network will start to process an image every Ni time steps.

6.3.2/ IMAGE TRANSFORMATIONS

A way to improve the classification performance is to increase the quality of the input data
and therefore two kinds of transformations are introduced. The first one, denoted by S x,
changes the original image to a new one of x × x pixels focused on the digit. It removes
most of the background around the digit and then changes its size while preserving its
aspect ratio. The second transformation, denoted by Rθ, is a centered counterclockwise
rotation of angle θ of the digit without changing the image size. The idea is to provide the
reservoir with a different point of view of the digit and thus to increase the input features
associated to a digit value.

The two transformations can be combined to produce a new image and rather than a
single image, the reservoir can receive several points of view of the same original image
by stacking transformed images. To assess the relevance of these transformations, their
combination and stacking, in addition to the configuration which uses the original image,
we have defined four other input configurations:

• Configuration A corresponds to a single image issued by S 15;

• Configuration B is A plus the image resulting of S 15 + R30;

• Configuration C is obtained by adding S 15 + R90 to B;

• Configuration D consists of the 3 images from C and S 15 + R150.



90 CHAPTER 6. ECHO STATE NETWORKS-BASED RESERVOIR COMPUTING

Figure 6.3: Examples of image deformations and stacking.

On the one hand the original size of 28 × 28 pixels of the images is reduced to 15 × 15 pix-
els and on the other hand the number of temporal series defining a digit instance will
range from 15 for configuration A up to 60 with configuration D.

As the dynamics induced by each configuration should be different, in each case the best
classification performance should be observed by using specific combination of spectral
radius and leaking rate values. As we expect to see an increase of the dynamics with the
transformations, a higher leaking rate should give better results.

6.3.3/ OUTPUT LAYER

The output ŷt is composed of 10 outputs (ŷk)t (0 ≤ k ≤ 9), one per possible digit value,
which are trained to match the target label yt ones, with (yk)t = 1 if the digit corresponding
to the input image In is k and 0 otherwise. In the case of the classical output layer, the final
prediction for In is obtained by taking the index of the output having the highest averaged
value over the time duration of the image. In other words, In is the digit d satisfying:

ŷd = max
{
ŷk

∣∣∣ 0 ≤ k ≤ 9
}

= max

 1
Ni

tend∑
t=tbegin

(ŷk)t

∣∣∣∣∣∣∣∣ 0 ≤ k ≤ 9

 . (6.11)

6.3.4/ EXPERIMENTAL RESULTS

A suitable parameter setup for the classical Li-ESN was found after some preliminary

experiments, leading to a spectral radius of 1.3, a proportion of zeros in
in
W of 90% and

10% in W, an input scaling of 0.6, bias values equal to 1.0, and a leaking rate of 0.2.
Notice the high spectral value, above one, and the low leaking rate showing that this
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Figure 6.4: Error rate of different input and output configurations for reservoirs of 100 and
1,200 neurons.

task requires a low dynamics. The classification performances presented thereafter for
two reservoir sizes (Nx = 100 and 1, 200 neurons) are obtained by averaging the results
obtained from 30 Li-ESN for each configuration.

The left part of Figure 6.4 presents the performance of each input configuration, while
the right part is devoted to the impact of the reservoir states used to compute the output
considering the best input configuration. In this last case, apart from Classical output
layer, the output configurations range from considering as a single state all the reservoir
states (Join States) from xtbegin to xtend , a concatenation of two (Mixed States) or three
(Mixed Three States) states, to only the final state (Last State). Besides the clear impact
of the reservoir size, two remarks can be made. First, we can see that the proposed
transformations allow to obtain better performances, with input configuration C which is
the best choice. As expected, we have found different optimal spectral radius values for
each configuration (from 1.2 for A to 0.1 for D) and a higher leaking rate a = 0.4 than
for the classical Li-ESN. Second, the strategy used to extract the outputs of the reservoir
by combining all the states (JS) is also beneficial. Regarding the computation time, for
the 1,200 neurons reservoir the training time is about 20 minutes on a typical personal
computer.

Table 6.1 shows a comparison with other machine learning approaches. The ESNs we
have investigated (denoted in bold in the table) are not able to outperform the state-of-
the-art CNN, but compared to earlier deep learning approaches [160] the classification
performances are fair. First, the reservoir of 1,200 neurons gives a lower error rate than
LeNet-1: the ESN yields 1.42% while it is 1.7% for LeNet-1. Second, a large ESN in-
stance using 4,000 neurons has an error rate of 0.93%, slightly lower than that of LeNet-4
and LeNet-5 [66]. Obviously, the generic architecture of RC, which allows to apply it eas-
ily to very different tasks, explains that a network architecture suited for computer vision
tasks as CNNs are one, offer better results.

Like for other classifiers, a committee of ESNs is a fast and common way to improve
performance. Besides, the three places on the podium are occupied by committees of 7,
35, and 5 CNNs, yielding respective error rates of 0.27%, 0.23%, and 0.21%. This last
value is the best performance so far and is nearly the human capacity (≈ 0.2%). However,
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Table 6.1: Comparison of different machine learning approaches.
Classifier Error rate Add/mult

LeNet-1 (deep learning) 1.7% 1.6 × 105

Li-ESN with MTS 1,200 neurons 1.68% 2.5 × 105

Li-ESN with JS 1,200 neurons 1.42% 4.5 × 105

21 × Li-ESN with JS 1,000 neurons 1.25% 15 × 106

SVM degree 4 1.1% 14 × 106

LeNet-4 1.1% 1.6 × 105

LeNet-5 0.95% 4.0 × 105

Li-ESN 4,000 neurons 0.93%
CNN 551 neurons 0.35%

7 × CNN 221 neurons 0.27%
35 × CNN 221 neurons 0.23%

5 × CNN with DropConnect 0.21%

despite nowadays GPU implementations, CNNs can have huge training time, stretching
from a few hours to several weeks. The ESN model on the contrary has a training time of
only about 20 minutes for a reservoir of 1,200 neurons.

Better performances can be achieved with the ESN model by extending the learning set
with affine and elastic transformations. Our method also shows an impressive capacity
to learn quickly with a small training set. Figure 6.5 shows the error rate for the network
using transformations of type C as input and each specific output layer. The error rate
drops quickly as the learning set size grows and reaches values near its minimum with
only one third of the set. This demonstrates a huge capacity of generalization.

Figure 6.5: Error rate of different input and output configurations according to the learning
set size.
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6.4/ CONCLUSION

We have shown that the Reservoir Computing paradigm and more particularly Echo State
Networks are able to deal with a computer vision task. In the case of the MNIST problem,
this kind of recurrent neural networks, which is interesting due to the ease of training and
existing neuromorphic implementations, gives a fair classification performance. To re-
duce the error rate, two approaches have been investigated with success. First, we have
fed the reservoir with different points of view of a same image, in order to increase the
features representing the corresponding digit. Second, the way the reservoir is exploited
to compute the output can also greatly affect the obtained results. We think that the very
generic architecture of ESNs allows an easy and fast use on a wide range of tasks, but
as only the output weights are trained for the target task, it might be outperformed by fully
optimized approaches like CNNs in the handwritten digits recognition case study.





CONCLUSION AND FUTURE WORK

1/ SUMMARY OF THE MAIN CONTRIBUTIONS

Today, the neural network field enjoys a resurgence of interest due to the many break-
through results obtained with deep learning architectures, but more traditional networks
are not necessarily outdated. The research works we have presented show that various
neural network architectures are able to provide a relevant solution for a wide range of
problems, provided that the data set is sufficiently representative to let them generalize.

A shallow feedforward multilayer network is thus perfectly suited for function approxima-
tion, assuming that the domain of definition is well-chosen with the handcrafted inputs.
Even if this is explained by the universal approximation theorem, the key is to be able to
find the optimal network topology and more particularly the setting of the hidden part of
the network. The practical cases described in the first part of this manuscript and solved
with multilayer perceptron networks clearly support this conclusion.

First, we have designed neural networks for the simulation of lung motion in the context
of image-guided radiotherapy. Therefore we have designed MLPs for two different tasks,
networks to improve the quality and the size of the initial data set and another one to
simulate the motion. Indeed, the data set consisted of anatomical feature points plotted on
4D-CT scans, a technology that captures the location and movement of a body’s organs
over time, but as the points were in limited number and their movements noisy, we had
to increase their number and smooth their trajectories. After this data augmentation, a
MLP was able to learn to simulate the motion of anatomical feature points of the lung.
However, even if it provides accurate simulations, it does not allow to directly render a 3D
view of the lung motion. An additional approach for reconstructing a dynamic 3D model
of the lung from the feature points is needed for that.

Second, we have assessed the ability of the multilayer perceptron neural network to give
a relevant modelling of the airflow evolution and then we have studied the application of
Micro-Electro-Mechanical Systems (MEMS) for aerodynamical active flow control. After
having established the relevance of a multilayer perceptron to predict the force corre-
sponding to the flow induced by the MEMS, we have optimized the flow with respect to a
numerical criterion. The case study which is considered is a dynamic flow over a back-
ward facing step (a rough model of the back of a car) where MEMS actuators velocities
are adjusted to maximize the pressure applied on the step surface and consequently the
corresponding force.

Third, we have presented a way to build chaotic neural networks based on a rigorous the-
oretical framework that allows to model the considered problems as dynamical systems
shown to be chaotic according to Devaney’s definition. This is a major contribution since
in most of the works dealing with chaotic neural networks the proposed networks are usu-
ally claimed to be chaotic without any mathematical proof. An extension to the dual case,
checking whether an existing neural network is chaotic or not, is outlined. It consists in

95



96

checking if the graph describing the network evolution is strongly connected or not. A fur-
ther question we have addressed by studying the predictability of a natural process that
exhibits a chaotic dynamics is the practical interest of neural networks in such cases, as
they are often the first choice in many research works that simply assume the considered
process to be predictable. Thus, after having established the chaotic behavior of protein
folding, we have shown that using a MLP to predict the fold is obviously questionable.

In all the aforementioned works, the inputs and the inner hidden part of the multilayer
networks have been tuned in order to identify the topology providing the best predictions.
For the inputs, the replacement of the initial low dimensional handmade input vector by
a Higher-order Process Unit structure with polynomial combinations systematically pro-
vided better function approximations. The benefit of using two hidden layers, together
with their respective best sizes, has been investigated with a trial and error process. As
for the single hidden layer setups an incremental training approach allowed to find the
optimal number of hidden neurons. All the networks were trained using a quasi-Netwon
method, the L-BFGS algorithm, to optimize the weights.

However, when the input data is unstructured and of high dimension, such as in the case
of an image, finding suitable handcrafted features that are compact and discriminant is
usually illusory. A main advantage of deep learning over all previous neural networks and
other machine learning methods is precisely the ability to extract features from the training
set. By searching during the training new ways to represent the input data, it allows also
to work with more complex data. To find such features, the data set must be large and
representative enough, and the training might take a long time even if increasingly pow-
erful computing platforms are available. Among the different kinds of deep architectures
some are known to be specifically suited for a type of problem, but as it is also the case
for other neural nets, the question of finding the optimal architecture for a given problem
is still open.

Motivated by the number of challenging tasks in computer vision for which deep learning
has achieved breakthrough improvements, we have investigated the application of deep
networks to two similar problems already studied in our research teams.

The first problem, which takes place in the information security context, is image ste-
ganalysis. We have thus studied the Convolutional Neural Network (CNN) architecture
as an alternative to the classical steganalysis approach based on Spatial Rich Models
(SRM), hand made features, and Ensemble Classifier (EC). In a first attempt we have
tried to build a new architecture that offers a better detection performance, but our pro-
posal was only limited to a single key embedding scheme. Then, considering a CNN
architecture which, to the best of our knowledge, is the most competitive one, we have
examined when this CNN architecture fails to propose a method improving the detection
performance for different spatial steganography algorithms. We have been able to de-
fine a reliable criterion allowing to decide, for an input image, when to use the CNN or
SRM+EC to obtain the most accurate prediction. The experiments done have validated
the proposed criterion, since it has always led to improved detection performances, re-
gardless of the studied embedding schemes. Another contribution of this work is to have
designed a steganalyzer insensitive to the embedding process (blind detection).

The second problem is image denoising whose aim is to achieve both noise reduction and
feature preservation. In many fields of application, image denoising is considered very
important to improve visual appearances and facilitate subsequent processing. Medical
imaging is a typical example with CT or ultrasound images. Therefore, we have conceived
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a fully convolutional neural network architecture that belongs to the encoder-decoder fam-
ily. The first experiments show that the obtained deep network can remove additive white
Gaussian noise and speckle noise, once trained for the targeted noise, whereas tradi-
tional denoising methods and even existing deep denoising methods usually only focus
on additive white Gaussian noise.

The manuscript ends with the description of a work that is quite different from the ones
described above. Indeed, Reservoir Computing is an attractive paradigm of recurrent
neural network architecture due to the ease of training and existing neuromorphic im-
plementations. It has been successively applied on speech recognition and time series
forecasting, but few works have so far studied the behavior of such networks on computer
vision tasks. To fill this lack, we have explored the ability of Echo State Networks to clas-
sify the digits of the MNIST database. We have shown that even if ESNs are not able to
outperform state-of-the-art convolutional networks, they can provide low error thanks to
an appropriate preprocessing of images.

2/ FUTURE WORK

The possible directions for future works are twofold. On the one hand, some of the
problems faced in the research works we have presented might be extended. On the other
hand, the experience gained in deep learning and the continuous significant progress
made in various areas thanks to neural networks encourage us to continue to study their
application to new challenging problems. In the following we present some plans for future
work in the fields of information security, medical image analysis, and bioinformatics.

2.1/ INFORMATION SECURITY

The work in the context of information hidding in images is limited to the detection of em-
bedding schemes in the spatial domain, i.e. steganography methods that slightly change
the value of some well chosen pixels. However, embedding methods have also been
developed for the frequency domain, in which case the secret message is embedded
in the transformed coefficients (typically issued from discrete cosine, Fourier, or wavelet
transforms). As detecting changes in the frequency domain is known to be more difficult
than in the spatial one, the design of a CNN-based steganalyzer for this case is obviously
more complex. As an example, while CNNs for spatial steganalysis typically have at
most five convolutional layers, the deep networks proposed for JPEG steganalysis merge
the outputs of several CNNs or use a very deep structure like the ResNet one. Some
researchers claim that the CNN architecture is the new state-of-the-art tool for steganal-
ysis, but we think that classical statistical approaches can still bring valuable information.
Therefore, as in our proposal for the spatial case, we think that it might be interesting to
investigate an approach that mixes deep learning and classical statistical analysis.

Deep learning is also receiving more and more attention in the detection of cyberattacks
that are executed to disclose confidential information, alter its integrity, and so on. Indeed,
recent high-profile cybersecurity issues have shown that new approaches are needed to
face the continuous growth of cyberthreats that can lead to potentially catastrophic, polit-
ical, economic, and social implications. Moreover, many systems are prone to attacks as
they have not been developed with security in mind, such as the ADS-B system that has
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been designed for the safe navigation of airplanes and air traffic control management.
This system allows to continuously and precisely follow aircraft movements thanks to the
broadcast of messages containing information like the aircraft number, speed, position,
etc. but its security can be easily compromised due to the lack of basic security mech-
anisms such as authentication, integrity, and encryption. Therefore being able to detect
anomalous ADS-B messages is of great importance to mitigate False Data Injection At-
tacks (FDIA) which represent a major threat. To solve this problem, we plan to work in
collaboration with colleagues of the VESONTIO team from DISC in order to build and train
a neural network using data obtained with automatic test pattern generation. To detect if
a message is a false one, its correctness will be established relatively to the preceding
messages. Indeed, considering a time series of messages, anomalous messages will
more or less appear as outliers. The need for a temporal analysis calls for a solution
based on a recurrent neural network architecture.

2.2/ MEDICAL IMAGE ANALYSIS

The design of automated image analysis tools, among which machine learning based
ones, is a longstanding issue in the medical imaging field. Indeed, Computer-Aided Diag-
nosis (CAD) from medical images has been used to help radiologists for a long time and
new solutions are continually proposed. Meanwhile, in the race for improving the quality
of image diagnosis and interpretation, deep neural networks have become the method-
ology of choice for analyzing medical images. Hence, over the past few years, medical
image analysis problems have been increasingly addressed with deep learning concepts,
in particular convolutional networks, leading to solutions providing state-of-the-art results.
A typical example showing the profound and lasting impact of deep learning on health-
care diagnostics is the detection of diabetic retinopathy, which is the leading cause of
blindness in the developed world. Following this trend, we will take advantage of our skills
in deep learning to revisit the lung motion simulation problem and to propose a solution
to help doctors to evaluate the state of the heart after myocardial infarction.

For the simulation of lung motion, we think that a Generative Adversarial Network (GAN)
is a good starting point for two reasons. First, as shown by some research works, a
GAN has the potential to predict pseudo-CT images from their corresponding MR images,
even if the quality of a pseudo-CT image must be enhanced. Anatomical boundaries
are more or less well-reconstructed, but cavities usually exhibit discrepancies. Second,
GANs have also been proposed to predict video frames. A first challenge would be to
identify a GAN architecture for simulating the lung motion in a single slice of a 4D-CT
during a respiratory cycle, and for that two kinds of networks will have to be devised and
trained: a generator and a discriminator. The generator produces samples in order to
fool the discriminator, whereas the latter tries to distinguish between real and generated
samples. Some studies have also shown that tumor motion is anatomic (lobe) location
dependent, thus a further improvement of the precision could be obtained by working
independently on each lung lobe. Finally, let us notice that the issue of respiratory motion
compensation during external-beam radiation therapy is not limited to the lungs, since
respiration causes significant motion of other organs such as the liver.

Assessing myocardial viability is of particular interest to estimate the state of the heart af-
ter Myocardial Infarction (MI), as it helps to determine whether the segment can recover
functionally from revascularization procedures. To address this question, Cardiovascu-
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lar MRI (CMRI), which is a non-invasive imaging technique, is the appropriate medical
imaging modality. Compared to other modalities, it provides high-resolution images of the
heart, and without radiation, adequate for the discrimination of viable and non-viable my-
ocardium. Therefore, considering CMRI scans, we have started a preliminary study in the
perspective of a deep learning based CAD tool dedicated to diagnostics in order to help
cardiologists to choose the best treatment for the heart defects. Once designed, this tool
is expected to automatically detect the different relevant areas (the myocardial contours,
the infarcted area, the permanent microvascular obstruction area, and the border zone
of the myocardial infarction) from a series of short-axis DE-MRI covering the left ventricle
and then to make a quantification of the MI, in absolute value (mm3) or percentage of the
myocardium. Semantic segmentation will be the key deep learning concept in the pro-
posal by identifying the infarcted area. This future work will take place in a collaboration
with colleagues of the LE2I lab from the University of Burgundy (one of them who is a
hospital practitioner will provide us with images) and benefits from a financial support as
a three year UBFC ISITE-BFC / Industry project starting at the end of 2018.

2.3/ BIOINFORMATICS

Biological data are known to be difficult to analyze due to their complex and heteroge-
neous nature. To overcome this difficulty, computational pipelines are usually developed,
as was the case during the PhD thesis that we have co-supervised and which addressed
the problem of reconstruction of ancestral DNA sequences. To automatically extract
knowledge from data, conventional machine learning tools have also been investigated,
but to obtain meaningful results a lot of energy is spent in transforming the raw data into
high-level features. Deep learning can bring a valuable contribution by extracting high-
abstraction level features on condition that the biological data can exhibit a structure from
which existing deep learning concepts can take advantage. For example, when dealing
with images, CNNs exploit their neighborhood structure by convolving subsets of input
pixels, thus to apply such deep networks to biological features, an analogous structure
must be available.

Considering the perspective of further investigating ancestral genome reconstruction of
microorganisms, we have identified a first task for which deep learning solutions might
be studied. To explore how organellar genomes have evolved over time, well annotated
genomes are required. This annotation task, which consists in the transformation of each
complete genome in an ordered list of genes, starts with an inspection to find the loca-
tion of the coding DNA sequences followed by their clustering in genes. Several tools
for (semi-)automated annotation are already available, like DOGMA (a tool for annotating
plant chloroplast and animal mitochondrial genomes) that has been used in the PhD the-
sis we have co-supervised. However, they suffer from limited customizability of reference
sequences by the user, which means that sequence annotation is still a bottleneck. We
think that deep learning can help to detect the location of the coding DNA sequences by
identifying interesting features in genomes.
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[145] Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert. “Optimiza-
tion and applications of echo state networks with leaky-integrator neurons”. In:
Neural Networks 20.3 (2007), pp. 335–352.

[146] Wolfgang Maass. “Liquid state machines: motivation, theory, and applications”. In:
Computability in context: computation and logic in the real world (2010), pp. 275–
296.

[147] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. “Deep reservoir computing:
A critical experimental analysis”. In: Neurocomputing 268 (2017). Advances in ar-
tificial neural networks, machine learning and computational intelligence, pp. 87–
99. ISSN: 0925-2312. DOI: https://doi.org/10.1016/j.neucom.2016.12.089. URL:
http://www.sciencedirect.com/science/article/pii/S0925231217307567.

[148] Claudio Gallicchio and Alessio Micheli. “Echo State Property of Deep Reservoir
Computing Networks”. In: Cognitive Computation (2017), pp. 1–14. ISSN: 1866-
9964. DOI: 10.1007/s12559-017-9461-9. URL: http://dx.doi.org/10.1007/s12559-
017-9461-9.

[149] C. D. Schuman et al. “A Survey of Neuromorphic Computing and Neural Networks
in Hardware”. In: ArXiv e-prints (May 2017). arXiv: 1705.06963.

[150] Chrisantha Fernando and Sampsa Sojakka. “Pattern Recognition in a Bucket”.
In: Advances in Artificial Life: 7th European Conference, ECAL 2003, Dortmund,
Germany, September 14-17, 2003. Proceedings. Ed. by Wolfgang Banzhaf, Jens
Ziegler, Thomas Christaller, Peter Dittrich, and Jan T. Kim. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 588–597. ISBN: 978-3-540-39432-7. DOI:
10.1007/978-3-540-39432-7_63. URL: http://dx.doi.org/10.1007/978-3-540-
39432-7_63.

[151] L. Larger et al. “Photonic information processing beyond Turing: an optoelec-
tronic implementation of reservoir computing”. In: Opt. Express 20.3 (Jan. 2012),
pp. 3241–3249. DOI: 10.1364/OE.20.003241. URL: http://www.opticsexpress.org/
abstract.cfm?%5C%5CURI=oe-20-3-3241.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dl.acm.org/citation.cfm?id=3045118.3045367
http://dl.acm.org/citation.cfm?id=3045118.3045367
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2016.12.089
http://www.sciencedirect.com/science/article/pii/S0925231217307567
http://dx.doi.org/10.1007/s12559-017-9461-9
http://dx.doi.org/10.1007/s12559-017-9461-9
http://dx.doi.org/10.1007/s12559-017-9461-9
http://arxiv.org/abs/1705.06963
http://dx.doi.org/10.1007/978-3-540-39432-7_63
http://dx.doi.org/10.1007/978-3-540-39432-7_63
http://dx.doi.org/10.1007/978-3-540-39432-7_63
http://dx.doi.org/10.1364/OE.20.003241
http://www.opticsexpress.org/abstract.cfm?%5C%5CURI=oe-20-3-3241
http://www.opticsexpress.org/abstract.cfm?%5C%5CURI=oe-20-3-3241


BIBLIOGRAPHY 113

[152] Laurent Larger et al. “High-Speed Photonic Reservoir Computing Using a Time-
Delay-Based Architecture: Million Words per Second Classification”. In: Phys.
Rev. X 7 (1 Feb. 2017), p. 011015. DOI: 10 .1103 /PhysRevX.7 .011015. URL:
https://link.aps.org/doi/10.1103/PhysRevX.7.011015.

[153] Daniel Brunner, Miguel C Soriano, Claudio R Mirasso, and Ingo Fischer. “Parallel
photonic information processing at gigabyte per second data rates using transient
states”. In: Nature communications 4 (2013), p. 1364.

[154] G. Van der Sande, D. Brunner, and M. Soriano. “Advances in photonic reser-
voir computing”. In: Nanophotonics 6.3 (May 2017), pp. 561–576. DOI: 10.1515/
nanoph- 2016- 0132. URL: https: / /www.degruyter.com/view/ j /nanoph.2017.6.
issue-3/nanoph-2016-0132/nanoph-2016-0132.xml.

[155] Andrey Nikolaevich Tikhonov and Vasily Yakovlevitch Arsenin. Solutions of ill-
posed problems. Winston, 1977.
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Abstract:

Since the introduction of the perceptron at the end of the 1950s, neural networks have passed through several
boom-and-bust episodes, becoming today the state-of-the-art approach for solving many classification and
prediction problems. The backpropagation algorithm has thus given rise to the multilayer networks era. More
recently, there has been a revival with the emergence of various deep neural networks also known as deep
learning architectures. The research works described in this manuscript reflect on the one hand this network
architecture evolution and on the other hand highlight the suitability of neural networks for successfully solving
tasks in different areas. In a first part we show that a multilayer perceptron neural network can simulate
lung motion being able to predict the trajectory of several feature points, that it can be a substitute for a
computational fluid dynamics software for active airflow control, and finally allows to build also a true chaotic
neural network. In the second part, convolutional neural networks (a main flavor of deep learning) are used
to detect whether an image embeds a hidden message or not, the obtained steganalysis approach was at the
time of its publication the state-of-the-art one. Then we propose a fully convolutional neural network for image
denoising, this latter, which is an encoder-decoder, can deal with different kinds of noise. Finally, considering,
the Reservoir Computing paradigm studied by colleagues of our research institute, we study the application
of Echo State Networks, a recurrent architecture, on a handwritten digits recognition problem (namely the
well-known MNIST benchmark problem).

Keywords: Multilayer Perceptron, Deep Learning, Reservoir Computing

Résumé :

Depuis l’introduction du perceptron à la fin des années 1950, les réseaux de neurones ont alterné des périodes
d’avancée et de stagnation, devenant aujourd’hui l’approche de référence pour la résolution de très nombreux
problèmes de classification ou de prédiction. L’algorithme de rétropropagation du gradient donna ainsi lieu à
l’âge des réseaux de neurones multicouches. Plus récemment, il y a eu une renaissance avec l’avènement de
la famille des réseaux de neurones profonds plus communément connue sous le terme de deep learning. Les
travaux de recherche décrits dans ce manuscrit reflètent, d’une part ces évolutions architecturales et d’autre
part la grande capacité des réseaux de neurones à résoudre des problèmes dans des domaines variés. Dans
une première partie nous montrons qu’un perceptron multicouche est une architecture permettant de simuler
le mouvement pulmonaire, en étant capable de prédire la trajectoire d’un ensemble de points caractéristiques,
de remplacer un programme de calcul de la mécanique des fluides pour le contrôle actif de flux d’air, et
enfin de construire des réseaux de neurones chaotiques. Dans la seconde partie, nous exploitons des
réseaux de neurones convolutionnels (une architecture phare du deep learning) afin de détecter si une image
embarque ou non un message caché, l’approche de stéganalyse obtenue était lors de sa publication la plus
performante. Nous proposons ensuite un réseau complètement convolutionnel pour le débruitage d’images,
à savoir un encodeur-décodeur capable de traiter plusieurs types de bruits. Pour finir, dans le cadre des
travaux sur le paradigme du Reservoir Computing menés au sein de notre institut de recherche, nous étudions
l’application des Echo State Networks, une architecture récurrente, sur un problème de reconnaissance de
chiffres manuscrits (le problème benchmark du MNIST).

Mots-clés : Perceptron Multicouche, Réseaux de Neurones Profonds, Reservoir Computing
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