1 In what follows, we consider the Boolean algebra on the set
2 $\Bool=\{0,1\}$ with the classical operators of conjunction '.',
3 of disjunction '+', of negation '$\overline{~}$', and of
4 disjunctive union $\oplus$.
6 Let $n$ be a positive integer. A {\emph{Boolean map} $f$ is
7 a function from the Boolean domain
10 $x=(x_1,\dots,x_n)$ maps to $f(x)=(f_1(x),\dots,f_n(x))$.
11 Functions are iterated as follows.
12 At the $t^{th}$ iteration, only the $s_{t}-$th component is
13 ``iterated'', where $s = \left(s_t\right)_{t \in \mathds{N}}$ is a sequence of indices taken in $\llbracket 1;n \rrbracket$ called ``strategy''. Formally,
14 let $F_f: \llbracket1;n\rrbracket\times \Bool^{n}$ to $\Bool^n$ be defined by
16 F_f(i,x)=(x_1,\dots,x_{i-1},f_i(x),x_{i+1},\dots,x_n).
18 Then, let $x^0\in\Bool^n$ be an initial configuration
20 \llbracket1;n\rrbracket^\Nats$ be a strategy,
21 the dynamics are described by the recurrence
22 \begin{equation}\label{eq:asyn}