1 \begin{block}{Iteration Graph}
2 The {\emph{iteration graph}} $\Gamma(f)$:
5 \item the set of vertices: $\Bool^n$
6 \item the set of edges: $(x,F_f(i,x)) \in \Gamma(f)$, $x\in\Bool^n$,
7 $i\in \llbracket1;n\rrbracket$
11 \begin{block}{Markov Matrix}
15 M_{ij} = \frac{1}{n} \textrm{ if $i \neq j$ and $(i,j) \in \Gamma(f)$} \\
16 M_{ij} = 0 \textrm{ if $i \neq j$ and $(i,j) \not \in \Gamma(f)$} \\
17 M_{ii} = 1 - \sum\limits_{j=1, j\neq i}^n M_{ij}
22 \begin{exampleblock}{$g(x_1,x_2)=(\overline{x_1},x_1\overline{x_2})$, $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$}
25 \subfloat[$\Gamma(g)$, $M_g$]{
26 \begin{minipage}{0.11\textwidth}
27 \includegraphics[scale=0.4]{g.pdf}
29 \begin{minipage}{0.25\textwidth}
40 \subfloat[$\Gamma(h)$, $M_h$]{
41 \begin{minipage}{0.10\textwidth}
42 \includegraphics[scale=0.4]{h.pdf}
44 \begin{minipage}{0.25\textwidth}