\begin{block}{Mixing Time} The smallest iteration number that is sufficient to obtain a deviation lesser $\varepsilon$ between rows of $M$ and a given distribution. \end{block} \begin{block}{PRNG $\chi_{\textit{14Secrypt}}$} \begin{itemize} \item Imputs: $f$, $b$, $x^0$, a \textit{Random} PRNG \begin{algorithm}[H] \begin{scriptsize} \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$ ($n$ bits)} \KwOut{a configuration $x$ ($n$ bits)} $x\leftarrow x^0$\; \For{$i=0,\dots,b-1$} { $s\leftarrow{\textit{Random}(n)}$\; $x\leftarrow{F_f(s,x)}$\; } return $x$\; \end{scriptsize} \end{algorithm} \item From $x^0$: a random walk in $\Gamma(f)$ thanks to \textit{Random} of length $b$ \end{itemize} \end{block}