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Abstract

This article presents a new class of Pseudorandom Number Generators. The generators are based
on traversing a n-cube where a Balanced Hamiltonian Cycle has been removed. The construction of
such generators is automatic for small number of bits, but remains an open problem when this number
becomes large. A running example is used throughout the paper. Finally, first statistical experiments
of these generators are presented, they show how efficient and promising the proposed approach
seems.

1 Introduction

Many fields of research or applications like numerical simulations, stochastic optimization, or informa-
tion security are highly dependent on the use of fast and unbiased random number generators. Depending
on the targeted application, reproducibility must be either required, leading to deterministic algorithms
that produce numbers as close as possible to random sequences, or refused, which implies to use an
external physical noise. The former are called pseudorandom number generators (PRNGs) while the
latter are designed by truly random number generators (TRNGs). TRNGs are used for instance in cypher
keys generation, or in hardware based simulations or security devices. Such TRNGs are often based on
a chaotic physical signal, may be quantized depending on the application. This quantization however
raises the problem of the degradation of chaotic properties.

The use of PRNGs, for its part, is a necessity in a large variety of numerical simulations, in which re-
sponses of devices under study must be compared using the same “random” stream. This reproducibility
is required too for symmetric encryption like one-time pad, as sender and receiver must share the same
pad. However, in that situation, security of the pseudorandom stream must be mathematically proven:
an attacker must not be able to computationally distinguish a pseudorandom sequence generated by the
considered PRNG with a really random one. Such cryptographically secure pseudorandom number gen-
erators are however only useful in cryptographic contexts, due to their slowness resulting from their
security.

Other kind of properties are desired for PRNGs used in numerical simulations or in programs that embed
a Monte-Carlo algorithm. In these situations, required properties are speed and random-like profiles of
the generated sequences. The fact that a given PRNG is unbiased and behaves as a white noise is thus
verified using batteries of statistical tests on a large amount of pseudorandom numbers. Reputed and up-
to-date batteries are currently the NIST suite [2], and DieHARD [5]. Finally, chaotic properties can be



desired when simulating a chaotic physical phenomenon or in hardware security, in which cryptograph-
ical proofs are not realizable. In both truly and pseudorandom number generation, there is thus a need
to mathematically guarantee the presence of chaos, and to show that a post-treatment on a given secure
and/or unbiased generator can be realized, which adds chaos without deflating these desired properties.

This work takes place in this domain with the desire of automatically generating a large class of PRNGs
with chaos and statistical properties. In a sense, it is close to [1] where the authors shown that some
Boolean maps may be embedded into an algorithm to provide a PRNG that has both the theoretical
Devaney’s chaos property and the practical property of succeeding NIST statistical battery of tests. To
achieve this, it has been proven in this article that it is sufficient for the iteration graph to be strongly
connected, and it is necessary and sufficient for its Markov probability matrix to be doubly stochastic.
However, they do not purpose conditions to provide such Boolean maps. Admittedly, sufficient condi-
tions to retrieve Boolean maps whose graphs are strongly connected are given, but it remains to further
filter those whose Markov matrix is doubly stochastic. This approach suffers from delaying the second
requirement to a final step whereas this is a necessary condition. In this position article, we provide a
completely new approach to generate Boolean functions, whose Markov matrix is doubly stochastic and
whose graph of iterations is strongly connected. Furthermore the rate of convergence is always taken
into consideration to provide PRNG with good statistical properties.

This research work is organized as follows. It firstly recall some preliminaries that make the document
self-contained (Section 2), The next section (Section 3) shows how the problem of finding some kind of
matrices is moved into the graph theory. Section 4 is the strongest contribution of this work. It presents
the main algorithm to generate Boolean maps with all the required properties and proves that such a
construction is correct. Statistical evaluations are then summarized in Section 5. Conclusive remarks,
open problems, and perspectives are finally provided.

2 Preliminaries

In what follows, we consider the Boolean algebra on the set B = {0,1} with the classical operators
of conjunction ’.’, of disjunction ’+’, of negation ’ ’, and of disjunctive union ⊕. Let n be a positive
integer. A Boolean map f is a function from the Boolean domain to itself such that x = (x1, . . . ,xn)
maps to f (x) = ( f1(x), . . . , fn(x)). Functions are iterated as follows. At the tth iteration, only the st−th
component is “iterated”, where s = (st)t∈N is a sequence of indices taken in J1;nK called “strategy”.
Formally, let Ff : J1;nK×Bn to Bn be defined by

Ff (i,x) = (x1, . . . ,xi−1, fi(x),xi+1, . . . ,xn).

Then, let x0 ∈Bn be an initial configuration and s ∈ J1;nKN be a strategy, the dynamics are described by
the recurrence

xt+1 = Ff (st ,xt). (1)

Let be given a Boolean map f . Its associated iteration graph Γ( f ) is the directed graph such that the set
of vertices is Bn, and for all x ∈Bn and i ∈ J1;nK, the graph Γ( f ) contains an arc from x to Ff (i,x).

It is easy to associate a Markov Matrix M to such a graph G( f ) as follows: Mi j =
1
n if there is an edge

from i to j in Γ( f ) and i 6= j; Mii = 1−
n
∑

j=1, j 6=i
Mi j; and Mi j = 0 otherwise.

Running example. Let us consider for instance n = 3. Let f ∗ : B3→ B3 be defined by f ∗(x1,x2,x3) =
(x2⊕ x3,x1⊕ x3,x3). The iteration graph Γ( f ∗) of this function is given in Figure 1(a) and its Markov
matrix is given in Figure 1(b).

The mixing time [4] is one of the usual metrics that gives how far the rows of a Markov matrix converge
to a specific distribution. It defines the smallest iteration number that is sufficient to obtain a deviation
lesser than a given ε for each rows of such kind of matrices.
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(b) Markov matrix associated to the
function f ∗

Figure 1: Representations of f ∗(x1,x2,x3) = (x2⊕ x3,x1⊕ x3,x3).

Let us finally present the pseudorandom number generator χ14Secrypt which is based on random walks
in Γ( f ). More precisely, let be given a Boolean map f : Bn→ Bn, a PRNG Random, an integer b that
corresponds to an awaited mixing time, and an initial configuration x0. Starting from x0, the algorithm
repeats b times a random choice of which edge to follow and traverses this edge. The final configuration
is thus outputted. This PRNG is formalized in Algorithm 1 further denoted as χ14Secrypt.

Input: a function f , an iteration number b, an initial configuration x0 (n bits)
Output: a configuration x (n bits)
x← x0;
for i = 0, . . . ,b−1 do

s← Random(n);
x← Ff (s,x);

end
return x;

Algorithm 1: Pseudo Code of the χ14Secrypt PRNG

Let f : Bn→ Bn. It has been shown [1, Th. 4, p. 135] that if its iteration graph is strongly connected,
then the output of χ14Secrypt follows a law that tends to the uniform distribution if and only if its Markov
matrix is a doubly stochastic matrix.

The next section presents an efficient method to generate Boolean functions with Doubly Stochastic
matrix and Strongly Connected iteration graph, further (abusively) denoted as DSSC matrix.

3 Generation of DSSC Matrices

Finding DSSC matrices can be theoretically handled by Constraint Logic Programming on Finite Do-
mains (CLPFD): all the variables range into finite integer domains with sum and product operations.
However, this approach suffers from not being efficient enough for large n due to a generate and test
pattern.

Intuitivelly, considering the n-cube and removing one outgoing edge and one ongoing edge for each
node should be a practical answer to the DSSC matrix finding problem. Moreover, the previous wish
of exaclty removing exactly one outgoing and one ongoing edge for each node is solved by removing a
Hamiltonian cycle in the n-cube. The next section details this step.

Running example. The iteration graph of f ∗ (given in Figure 1(a)) is the 3-cube in which the Hamilto-
nian cycle 000,100,101,001,011,111,110,010,000 has been removed.



4 Removing Hamiltonian Cycles

The first theoretical section (Section 4.1) shows that this approach produces DSSC matrix, as wished.
The motivation to focus on balanced Gray code is then given in Sec. 4.2. We end this section by giving
some discussion about practical aspeccts of an existing algorithm that aims at computing such codes
(Section 4.3).

4.1 Theoretical Aspects of Removing Hamiltonian Cycles

We first have the following result on stochastic matrix and n-cube without Hamiltonian cycle.

Theorem 1. The Markov Matrix M resulting from the n-cube in which an Hamiltonian cycle is removed,
is doubly stochastic.

The proof is left as an exercise for the reader. The following result states that the n-cube without one
Hamiltonian cycle has the awaited property with regard to the connectivity.

Theorem 2. The iteration graph issued from the n-cube where an Hamiltonian cycle is removed is
strongly connected.

Again, the proof is left as an exercise for the reader. Removing an Hamiltonian cycle in the n-cube solves
thus the DSSC constraint. We are then left to focus on the generation of Hamiltonian cycles in the n-cube.
Such a problem is equivalent to find cyclic Gray codes, i.e., to find a sequence of 2n codewords (n-bits
strings) where two successive elements differ in only one bit position and and where the last codeword
differs in only one bit position from the first one. The next section is dedicated to these codes.

4.2 Linking to Cyclic (Totally) Balanced Gray Codes

Let n be a given integer. As far as we know, the exact number of Gray codes in Bn is not known but a

lower bound,
(

n∗log2
e log logn ∗ (1−o(1))

)2n

has been given in [3]. For example, when n is 6, such a number

is larger than 1013. To avoid this combinatorial explosion, we want to restrict the generation to any Gray
code such that the induced graph of iteration Γ( f ) is “uniform”. In other words, if we count in Γ( f ) the
number of edges that modify the bit i, for 1≤ i≤ n, all these values have to be close to each other. Such
an approach is equivalent to restrict the search of cyclic Gray codes which are uniform too.

This notion can be formalized as follows. Let L = w1,w2, . . . ,w2n be the sequence of a n-bits cyclic
Gray code. Let S = s1,s2, . . . ,s2n be the transition sequence where si, 1 ≤ i ≤ 2n indicates which bit
position changes between codewords at index i and i+1 modulo 2n. Let TCn : {1, . . . ,n} → {0, . . . ,2n}
the transition count function that counts the number of times i occurs in S, i.e., the number of times the
bit i has been switched in L. The Gray code is totally balanced if TCn is constant (and equal to 2n

n ). It is
balanced if for any two bit indices i and j, |TCn(i)−TCn( j)| ≤ 2.

Running example. Let L∗ = 000,100,101,001,011,111,110,010 be the Gray code that corresponds to
the Hamiltonian cycle that has been removed in f ∗. Its transition sequence is S = 3,1,3,2,3,1,3,2 and
its transition count function is TC3(1) = TC3(2) = 2 and TC3(3) = 4. Such a Gray code is balanced.

Let now L4 = 0000,0010,0110,1110,1111,0111,0011,0001,0101, 0100,1100,1101,1001,1011,1010,1000
be a cyclic Gray code. Since S = 2,3,4,1,4,3,2,3,1,4,1,3,2,1,2,4, its transition count TC4 is equal to
4 everywhere and this code is thus totally balanced.



4.3 Induction-Based Generation of Balanced Gray Codes

The article [6] proposed the “Construction B” algorithm to produce Balanced Gray Codes. This method
inductively constructs n-bits Gray code given a n−2-bit Gray code. The authors have proven that Sn is
transition sequence of a cyclic n-bits Gray code if Sn−2 is. It starts with the transition sequence Sn−2 of
such code and the following first step:

Let l be an even positive integer. Find u1,u2, . . . ,ul−2,v (maybe empty) subsequences of Sn−2 such that
Sn−2 is the concatenation of si1 ,u0,si2 ,u1,si3 ,u2, ...,sil−1,ul−2,sil ,v where i1 = 1, i2 = 2, and u0 = /0 (the
empty sequence).

However, this first step is not constructive: it does not precises how to select the subsequences which
ensures that yielded Gray code is balanced.

Let us now evaluate the number of subsequences u than can be produced. Since si1 and si2 are well
defined, we have to chose the l−2 elements of s3,s4, . . . ,s2n−2 that become si3 , . . . ,sil . Let l = 2l′. There
are thus #n = ∑

2n−3

l′=1
(2n−2−2

2l′−2

)
distinct subsequences u. Numerical values of #n are given in table 1. Even

for small values of n, it is not reasonable to hope to evaluate the whole set of subsequences.

n 4 5 6 7 8
#n 1 31 8191 5.3e8 2.3e18
#′n 1 15 3003 1.4e8 4.5e17

Table 1: Number of distinct u subsequences.

However, it is shown in the article that TCn(n− 1) and TCn(n) are equal to l. Since this step aims
at generating (totally) balanced Gray codes, we have set l to be the largest even integer less or equal
than 2n

n . This improvement allows to reduce the number of subsequences to study. Examples of such
cardinalities are given in Table 1 and are referred as #′n.

Finally, the table 2 gives the number of non-equivalent functions issued from (totally) balanced Gray
codes that can be generated with the approach presented in this article with respect to the number of bits.
In other words, it corresponds to the size of the class of generators that can be produced. Notice that
when n is 7 and 8, we only give lower bounds for 2.5E5 distinct choices for the u subsequence.

n 4 5 6 7 8
nb. of functions 1 2 1332 > 2300 > 4500

Table 2: Number of Generators w.r.t. the number of bits.

5 Experiments

We have directly implemented the algorithm given in Figure 1. For function f and our experiments b is
set with the value given in the fourth column of Table 3.

For each number n = 4,5,6,7,8 of bits, we have generated the functions according the method given in
Section 4.3 . For each n, we have then restricted this evaluation to the function whose Markov Matrix has
the smallest mixing time. Such functions are given in Table 3. In this table, let us consider for instance the
function a© fromB4 toB4 defined by the following images : [13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8].
In other words, the image of 3 (0011) by a© is 14 (1110): it is obtained as the binary value of the fourth
element in the second list (namely 14).

Experiments have shown that all the generators pass the NIST and the DieHARD batteries of tests.



Function f f (x), for x in (0,1,2, . . . ,2n−1) n b
a© [13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8] 4 32
b© [29, 22, 21, 30, 19, 27, 24, 28, 7, 20, 5, 4, 23, 26, 25, 17, 31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 1, 6, 11, 18, 0, 16] 5 41

[55, 60, 45, 56, 43, 62, 61, 40, 53, 50, 52, 36, 59, 34, 57, 49, 15, 14, 47, 46, 11, 58, 33, 44, 7, 54, 39, 37, 51, 2, 32, 48,
c© 63, 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 12, 29, 8, 10, 42, 41, 0, 5, 38, 4, 6, 35, 3, 9, 1] 6 49

[111,94,93,116,122,114,125,88,87,126,119,84,123,98,81,120,109,78,105,110,99,107,104,108,101,
70,117,96,103,102,113,64,79,30,95,124,83,91,121,24,85,118,69,20,115,90,17,112,77,76,73,12,74,

d© 106,72,8,7,6,71,100,75,82,97,0,127,54,57,62,51,59,56,48,53,38,37,60,55,58,33,49,63,44,47,40,42, 7 63
46,45,41,35,34,39,52,43,50,32,36,29,28,61,92,26,18,89,25,19,86,23,4,27,2,16,80,31,10,15,14,3,11,
13,9,5,22,21,68,67,66,65,1]
[223,250,249,254,187,234,241,252,183,230,229,180,227,178,240,248,237,236,253,172,251,238,201,
224,247,166,165,244, 163,242,161,225,215,220,205,216,218,222,221,208,213,210,135,196,199,132,
194,130,129,200,159,186,185,190,59,170,177,188,191,246,245,52,243,50,176,184,173,46,189,174,
235,42,233,232,231,38,37,228,35,226,33,168,151,156,141,152, 154,158,157,144,149,146,148,150,

e© 155,147,153,145,175,14,143,204,11,202,169,8,7,198,197,4,195,2,1,192,255,124,109,120,107,126, 8 75
125,112,103,114,116,100,123,98,121,113,79,106,111,110,75,122,97,108,71,118,117,68,115,66,96,
104,127,90,89,94,83,91,81,92,95,84,87,85,82,86,80,88,77,76,93,72,74,78,105,64,69,102,101,70,99,
67,73,65,55,60,45,56,51,62,61,48,119,182,181,53,179,54,57,49,15,44,47,40,171,58,9,32,167,6,5,
164,3,162,41,160,63,26,25,30,19,27,17,28,31,20,23,21,18,22,16,24,13,10,29,140,43,138,137,12,39,
134,133,36,131,34,0,128]

Table 3: Functions with DSCC Matrix and smallest MT

6 Conclusion

This article has presented a method to compute a large class of truly chaotic PRNGs. First experiments
through the batteries of NIST, and DieHard have shown that the statistical properties are almost estab-
lished for n = 4,5,6,7,8. The iterated map inside the generator is built by removing from a n-cube an
Hamiltonian path that corresponds to a (totally) balanced Gray code. The number of balanced gray code
is large and each of them can be considered as a key of the PRNG. However, many problems still remain
open, most important ones being listed thereafter.

The first one involves the function to iterate. Producing a DSSC matrix is indeed necessary and sufficient
but is not linked with the convergence rate to the uniform distribution. To solve this problem, we have
proposed to remove from the n-cube an Hamiltonian path that is a (totally) balanced Gray code. We do
not have proven that this proposal is the one that minimizes the mixing time. This optimization task is
an open problem we plan to study.

Secondly, the approach depends on finding (totally) balanced Gray codes. Even if such codes exist for
all even numbers, there is no constructive method to built them when n is large, as far as we know. These
two open problems will be investigated in a future work.
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