\begin{block}{Iteration Graph} The {\emph{iteration graph}} $\Gamma(f)$: directed graph s. t. \begin{itemize} \item the set of vertices: $\Bool^n$ \item the set of edges: $(x,F_f(i,x)) \in \Gamma(f)$, $x\in\Bool^n$, $i\in \llbracket1;n\rrbracket$ \end{itemize} \end{block} \begin{block}{Markov Matrix} Matrix $M$: \[ \begin{array}{l} M_{ij} = \frac{1}{n} \textrm{ if $i \neq j$ and $(i,j) \in \Gamma(f)$} \\ M_{ij} = 0 \textrm{ if $i \neq j$ and $(i,j) \not \in \Gamma(f)$} \\ M_{ii} = 1 - \sum\limits_{j=1, j\neq i}^n M_{ij} \end{array} \] \end{block} \begin{exampleblock}{$g(x_1,x_2)=(\overline{x_1},x_1\overline{x_2})$, $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$} \vspace{-1em} \begin{figure}%[t] \subfloat[$\Gamma(g)$, $M_g$]{ \begin{minipage}{0.11\textwidth} \includegraphics[scale=0.4]{g.pdf} \end{minipage} \begin{minipage}{0.25\textwidth} $\dfrac{1}{2}\left( \begin{array}{c} 1 0 1 0 \\ 1 0 0 1 \\ 1 0 0 1 \\ 0 1 1 0 \end{array} \right)$ \end{minipage} } \subfloat[$\Gamma(h)$, $M_h$]{ \begin{minipage}{0.10\textwidth} \includegraphics[scale=0.4]{h.pdf} \end{minipage} \begin{minipage}{0.25\textwidth} $\dfrac{1}{2}\left( \begin{array}{c} 1 0 1 0 \\ 0 1 0 1 \\ 1 0 0 1 \\ 0 1 1 0 \end{array} \right) $ \end{minipage} } \end{figure} \end{exampleblock}