
1 Mathematical Backgroung

Let G be a �nite group. For any subset S of G we denote by < S > the subgroup
of G generated by S. If < S >= G, S is a generator of G.

Let π, µ be two distribution on a same set Ω. The total variation distance
between π and µ is denoted ‖π − µ‖TV and is de�ned by

‖π − µ‖TV = max
A⊂Ω
|π(A)− µ(A)|.

It is known that

‖π − µ‖TV =
1

2

∑
x∈Ω

|π(x)− µ(x)|.

Moreover, if ν is a distribution on Ω, one has

‖π − µ‖TV ≤ ‖π − ν‖TV + ‖ν − µ‖TV

Let P be the matrix of a markov chain on Ω. P (x, ·) is the distribution
induced by the x-th row of P . If the markov chain induced by P has a stationary
distribution π, then we de�ne

d(t) = max
x∈Ω
‖P t(x, ·)− π‖TV,

and

tmix(ε) = min{t | d(t) ≤ ε}.
One can prove that

tmix(ε) ≤ dlog2(ε−1)etmix(
1

4
)

It is known that d(t+ 1) ≤ d(t).

2 PRNG and random walk on Cayley graphs

Let S be a generator of BN such that if s ∈ S, then −s ∈ S. Let ν be a
distribution on S such that ν(s) = ν(−s). The matrix P ν , or just P ν , or just
P , is the matrix de�ned by: P ν(x, y) = ν(y − x) if x− y ∈ S and 0 otherwise.
P νS is the ν-random walk on the S-Cayley graph of G.

A general results on random walks claims that the uniform distribution is
stationnary for P . Moreover, if ν(s) > 0 for each s, then this is the limit
distribution.

Let P be �nite subset of N and µ a distribution on P. Set

PP,µ =
∑
k∈P

µ(k)P k.

With the above notation, PP,µ is the matrix of the markov chain correspond-
ing to the PRNG de�ned by Christophe, where S corresponds to the boolean
functions and µ si the probability of choosing elements of P.
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Example 1 For instance let ei be the vector of BN whose i-th componenent is
1 and all other compoennts are null. Let e0 = 0 and S = {ei | 0 ≤ i ≤ N}.
Choosing ν(ei) =

1

N + 1
, we obtain the random walk de�ned by the bit negation

of the paper by Christophe and JEF. The associated matrix will be denoted P1.

Choosing P = {10, 11} and µ(10) = µ(11) =
1

2
provides the PRNG with steps

of lengths 10 or 11 with the same probability.

Example 2 With the same notation, choosing the same S, but ν(ei) =
1

2n
if i ≥ 1 and ν(e0) = 1/2 leads to the the classical lazy random walk on BN
(also known as the lazy random walk on the hypercube or as the Ehrenfest Urn
Model). The associated matrix will be denoted P2.

Example 3 Choosing S = G and the uniform distribution for ν corresponds
to the xor approach of the paper with Raphael.

3 Results

The main result is that if the minimal element of P is greater or equal to the
mixing time of P , then the PRNG provides a distribution whose distance to the
uniform distribution is at most ε.

Let tP (ε) be the ε mixing time for P . Without loss of generality we assume
that if k ∈ P, then µ(k) > 0.

Proposition 4 Let k0 = min{k | k ∈ P}. If k0 ≥ tP (ε), and if ν(s) > 0 for all

s ∈ S, then one has ‖PP,µ(x, ·)−π‖TV ≤ ε, where π is the uniform distribution.

Proof. The fact that ν(s) > 0 for all s ∈ S ensures that the uniform
distribution is the limits of the markov chains induced by P (classical results
on random walks).

2



Now,

‖PP,µ(x, ·)− π‖TV = ‖
∑
k∈P

µ(k)P k(x, ·)− π‖TV

=
1

2

∑
y∈BN

|
∑
k∈P

µ(k)P k(x, y)− 1

2N
|

=
1

2

∑
y∈BN

|
∑
k∈P

µ(k)P k(x, y)− 1

2N

∑
k∈P

µ(k)|

=
1

2

∑
y∈BN

|
∑
k∈P

µ(k)(P k(x, y)− 1

2N
)|

≤ 1

2

∑
y∈BN

∑
k∈P

µ(k)|P k(x, y)− 1

2N
|

≤
∑
k∈P

µ(k)

1

2

∑
y∈BN

|P k(x, y)− 1

2N
|


≤

∑
k∈P

µ(k)‖P k(x, ·)− π‖TV

≤
∑
k∈P

µ(k)ε

≤ ε

2

Therfore it su�ces to study the mixing time of P .

4 Mixing time of P1

See the Ehrenfest Urn Model. One can prove that for P1,

tmix(ε) ≤ N logN + log(
1

ε
)N.

Better results exist see [?, page 83, page 267]

5 Mixing time of P2

In practice one can compute egenvalues and use [?, page 155].
There are theoretical results [?, page 321-322] and [?].
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6 To do

Experiments for computing mixing time for P2.
Experiments for other P (handly built)
Which ε makes possible to pass statistical tests for our PRNGs. Other tests

can be performed.

7 Future

Look at [?] for theoretical results. Explore random random walk on the hyper-
cube.

4


