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Abstract: In this article, it is shown that a large class of truly chaotic Pseudorandom Number Generators can be con-
structed. The generators are based on iterating Boolean maps, which are computed using balanced Gray codes.
The number of such Gray codes gives the size of the class. The construction of such generators is automatic
for small number of bits, but remains an open problem when this number becomes large. A running example
is used throughout the paper. Finally, first statistical experiments of these generators are presented, they show
how efficient and promising the proposed approach seems.

1 INTRODUCTION

Many fields of research or applications like nu-
merical simulations, stochastic optimization, or infor-
mation security are highly dependent on the use of
fast and unbiased random number generators. De-
pending on the targeted application, reproducibility
must be either required, leading to deterministic al-
gorithms that produce numbers as close as possible to
random sequences, or refused, which implies to use
an external physical noise. The formers are called
pseudorandom number generators (PRNGs) while the
laters are designed by truly random number genera-
tors (TRNGs). TRNGs are used for instance in cypher
keys generation, or in hardware based simulations or
security devices. Such TRNGs are often based on a
chaotic physical signal, may be quantized depending
on the application. This quantization however raises
the problem of the degradation of chaotic properties.

The use of PRNGs, for its part, is a necessity in
a large variety of numerical simulations, in which re-
sponses of devices under study must be compared us-
ing the same “random” stream. This reproducibility is
required too for symmetric encryption like one-time
pad, as sender and receiver must share the same pad.
However, in that situation, security of the pseudoran-
dom stream must be mathematically proven: an at-
tacker must not be able to computationally distinguish
a pseudorandom sequence generated by the consid-
ered PRNG with a really random one. Such crypto-
graphically secure pseudorandom number generators
are however only useful in cryptographic contexts,
due to their slowness resulting from their security.

Other kind of properties are desired for PRNGs
used in numerical simulations or in programs that
embed a Monte-Carlo algorithm. In these situa-

tions, required properties are speed and random-
like profiles of the generated sequences. The fact
that a given PRNG is unbiased and behaves as a
white noise is thus verified using batteries of sta-
tistical tests on a large amount of pseudorandom
numbers. Reputed and up-to-date batteries are cur-
rently the NIST suite (Barker and Roginsky, 2010),
DieHARD (Marsaglia, 1996), and TestU01 (Simard
and Montréal, 2007), this latter being the most strin-
gent one. Finally, chaotic properties can be desired
when simulating a chaotic physical phenomenon or
in hardware security, in which cryptographical proofs
are not realizable. In both truly and pseudorandom
number generation, there is thus a need to mathemat-
ically guarantee the presence of chaos, and to show
that a post-treatment on a given secure and/or un-
biased generator can be realized, which adds chaos
without deflating these desired properties.

This work takes place in this domain with the
desire of automatically generating a large class of
PRNGs with chaos and statistical properties. In a
sense, it is close to (Bahi et al., 2011) where the au-
thors shown that some Boolean maps may be embed-
ded into an algorithm to provide a PRNG that has
both the theoretical Devaney’s chaos property and the
practical property of succeeding NIST statistical bat-
tery of tests. To achieve this, it has been proven in
this article that it is sufficient for the iteration graph
to be strongly connected, and it is necessary and suf-
ficient for its Markov probability matrix to be doubly
stochastic. However, they do not purpose conditions
to provide such Boolean maps. Admittedly, sufficient
conditions to retrieve Boolean maps whose graphs are
strongly connected are given, but it remains to further
filter those whose Markov matrix is doubly stochas-
tic. This approach suffers from delaying the second



requirement to a final step whereas this is a neces-
sary condition. In this position article, we provide a
completely new approach to generate Boolean func-
tions, whose Markov matrix is doubly stochastic and
whose graph of iterations is strongly connected. Fur-
thermore the rate of convergence is always taken into
consideration to provide PRNG with good statistical
properties.

This research work is organized as follows. It
firstly recall some preliminaries that make the doc-
ument self-contained (Section 2), The next section
(Section 3) shows how this problem can be theoret-
ically solved with a classical constraint logic pro-
gramming. Section 4 is the strongest contribution of
this work. It presents the main algorithm to gener-
ate Boolean maps with all the required properties and
proves that such a construction is correct. Statistical
evaluations are then presented in Section 5. Conclu-
sive remarks, open problems, and perspectives are fi-
nally provided.

2 PRELIMINARIES

In what follows, we consider the Boolean algebra
on the set B = {0,1} with the classical operators of
conjunction ’.’, of disjunction ’+’, of negation ’ ’, and
of disjunctive union ⊕.

Let n be a positive integer. A Boolean map f is
a function from the Boolean domain to itself such
that x= (x1, . . . ,xn) maps to f (x) = ( f1(x), . . . , fn(x)).
Functions are iterated as follows. At the tth itera-
tion, only the st−th component is “iterated”, where
s = (st)t∈N is a sequence of indices taken in J1;nK
called “strategy”. Formally, let Ff : J1;nK×Bn to Bn

be defined by

Ff (i,x) = (x1, . . . ,xi−1, fi(x),xi+1, . . . ,xn).

Then, let x0 ∈ Bn be an initial configuration and s ∈
J1;nKN be a strategy, the dynamics are described by
the recurrence

xt+1 = Ff (st ,xt). (1)

Let be given a Boolean map f . Its associated it-
eration graph Γ( f ) is the directed graph such that the
set of vertices is Bn, and for all x ∈Bn and i ∈ J1;nK,
the graph Γ( f ) contains an arc from x to Ff (i,x).

Running example. Let us consider for instance n =
3. Let f ∗ : B3 → B3 be defined by f ∗(x1,x2,x3) =
(x2⊕x3,x1⊕x3,x3). The iteration graph Γ( f ∗) of this
function is given in Figure 1.

It is easy to associate a Markov Matrix M to such
a graph G( f ) as follows:
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Figure 1: Iteration Graph Γ( f ∗) of the function f ∗

• Mi j =
1
n if there is an edge from i to j in Γ( f ) and

i 6= j;

• Mii = 1−
n
∑

j=1, j 6=i
Mi j;

• Mi j = 0 otherwise.

Running example. The Markov matrix associated to
the function f ∗ is

1
3



1 1 1 0 0 0 0 0
1 1 0 0 0 1 0 0
0 0 1 1 0 0 1 0
0 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 1 1 0 1
0 0 0 0 1 0 1 1
0 0 0 1 0 0 1 1


It is usual to check whether rows of such kind

of matrices converge to a specific distribution. Let
us first recall the Total Variation distance ‖π− µ‖TV,
which is defined for two distributions π and µ on the
same set Ω by:

‖π−µ‖TV = max
A⊂Ω

|π(A)−µ(A)|.

Let then M(x, ·) be the distribution induced by the
x-th row of M. If the Markov chain induced by M has
a stationary distribution π, then we define

d(t) = max
x∈Ω

‖Mt(x, ·)−π‖TV.

Intuitively d(t) is the largest deviation between the
distribution π and Mt(x, ·), which is the result of iter-
ating t times the function.

Finally, let ε be a positive number, the mixing time
with respect to ε is given by

tmix(ε) = min{t | d(t)≤ ε}.

It defines the smallest iteration number that is suffi-
cient to obtain a deviation lesser than ε. Notice that
the upper and lower bounds of mixing times cannot



directly be computed with eigenvalues formulae as
expressed in (Levin et al., 2006, Chap. 12). The
authors of this latter work only consider reversible
Markov matrices whereas we do no restrict our ma-
trices to such a form.

Let us finally present the pseudorandom number
generator χ14Secrypt which is based on random walks
in Γ( f ). More precisely, let be given a Boolean map
f :Bn→Bn, a PRNG Random, an integer b that cor-
responds to an awaited mixing time, and an initial
configuration x0. Starting from x0, the algorithm re-
peats b times a random choice of which edge to follow
and traverses this edge. The final configuration is thus
outputted. This PRNG is formalized in Algorithm 1.

Input: a function f , an iteration number b, an
initial configuration x0 (n bits)

Output: a configuration x (n bits)
x← x0;
for i = 0, . . . ,b−1 do

s← Random(n);
x← Ff (s,x);

end
return x;

Algorithm 1: Pseudo Code of the χ14Secrypt PRNG

This PRNG is a particularized version of Algo-
rithm given in (Bahi et al., 2011). Compared to this
latter, the length of the random walk of our algorithm
is always constant (and is equal to b) whereas it was
given by a second PRNG in this latter. However, all
the theoretical results that are given in (Bahi et al.,
2011) remain true since the proofs do not rely on this
fact. Let us recall the following theorem.

Theorem 1 ((Bahi et al., 2011, Th. 4, p. 135)).
Let f : Bn→ Bn, Γ( f ) its iteration graph, and M its
Markov matrix . If Γ( f ) is strongly connected, then
the output of the PRNG follows a law that tends to
the uniform distribution if and only if M is a doubly
stochastic matrix.

With all this material, we can present an efficient
method to generate Boolean functions with Doubly
Stochastic matrix and Strongly Connected iteration
graph, further (abusively) denoted as DSSC matrix.

3 GENERATION OF DSSC
MATRICES

This aim of this section is to show that finding
DSSC matrices from a hypercube is a typical finite
domain satisfaction problem, classically denoted as
Constraint Logic Programming on Finite Domains

(CLPFD). This part is addressed in the first section.
Next, we analyse the first results to provide a genera-
tion of DSSC matrices with small mixing times.

3.1 Constraint Logic Programming on
Finite Domains

First of all, let n be the number of elements. In order
to avoid fractions in this article, we consider here that
the sum of each column and each row is n. It can
easily be normalized to 1. The goal is thus to find all
the 2n×2n matrices M such that:

1. Mi j is 0 if j is not a neighbor of i, i.e., there is no
edge from i to j in the n-cube.

2. 0≤Mii≤ n: the number of loops around i is lesser
than n

3. Otherwise 0 ≤Mi j ≤ 1: if the edge from i to j is
kept, Mi j is 1, and 0 otherwise.

4. For any index of line i, 1 ≤ i ≤ 2n, n =
∑1≤ j≤2n Mi j: the matrix is right stochastic.

5. For any index of column j, 1 ≤ j ≤ 2n, n =
∑1≤i≤2n Mi j: the matrix is left stochastic.

6. All the values of ∑1≤k≤2n Mk are strictly positive,
i.e., the induced graph is strongly connected.

Since these variables range into finite integer do-
mains with sum and product operations, this prob-
lem can be theoretically handled by Constraint Logic
Programming on Finite Domains (CLPFD), as imple-
mented in prolog. The algorithm given in Figure 2
is indeed the core of the prolog file that is used to
instantiate all the solutions when n is 2. In this code,
mmult(X ,Y,R) and summ(X ,Y,R) are true if and only
if R is the matrix product or the matrix sum between
X and Y respectively. It is not hard to adapt such a
code to any value of positive integer n.

Finally, we define the relation R , which is estab-
lished on the two functions f and g if the iteration
graphs Γ( f ) and Γ(g) are isomorphic. Obviously, this
is an equivalence relation.

3.2 Analysis of the Approach

When executed on a personal computer, prolog finds
in less than 1 second the 49 solutions when n is 2,
where only 2 are not equivalent, and in less than 1
minute the 27642 solutions where only 111 are not
equivalent when n is 3. But it does not achieve the
generation of all the solutions when n is 4. This ap-
proach suffers from not being efficient enough for
large n due to a generate and test approach, despite
the efficiency of the native backtrack of in CLP.



b i s t o c (X):−
M= [ [ M0_0 , M0_1 , 0 , M0_3 ] , [ M1_0 , M1_1 , 0 , M1_3 ] ,

[ M2_0 , 0 , M2_2 , M2_3 ] , [ 0 , M3_1 , M3_2 , M3_3 ] ] ,
[ M0_0 , M1_1 , M2_2 , M3_3 ] i n s 0 . . 2 ,
[ M0_1 , M0_3 , M1_0 , M1_3 , M2_0 , M2_3 , M3_1 , M3_2 ]

i n s 0 . . 1 ,
M0_0+ M0_1+ M0_2 #=2 , M1_0+ M1_1+ M1_3 #=2 ,
M2_0+ M2_2+ M2_3 #=2 , M3_1+ M3_2+ M3_3 #=2 ,
M0_0+ M1_0+ M2_0 #=2 , M0_1+ M1_1+ M3_1 #=2 ,
M0_2+ M2_2+ M3_2 #=2 , M1_3+ M2_3+ M3_3 #=2 ,
mmult (M,M,M2) ,
mmult (M, M2,M3) ,
mmult (M, M3,M4) ,
summ(M, M2, S2 ) ,
summ( S2 , M3, S3 ) ,
summ( S3 , M4, S4 ) ,
a l l p o s i t i v e ( S4 ) .

Figure 2: Prolog Problem to Find DSSC Matrix when
n = 2

However, first results for small values of n have
been evaluated. More precisely, non equivalent gener-
ated functions have been compared according to their
ability to efficiently produce uniformly distributed
outputs, i.e., to have the smallest mixing time.

Running example. Table 1 gives the 5 best Boolean
functions ordered by their mixing times (MT) in the
third column for ε = 10−5.

Name Image MT
f ∗ (x2⊕ x3,x1⊕ x3,x3) 16
f a (x2⊕ x3,x1x3 + x1x2,x1x3 + x1x2) 17
f b (x1(x2 + x3)+ x2x3,x1(x2 + x3)+ x2x3,

x3(x1 + x2)+ x1x2) 26
f c (x1(x2 + x3)+ x2x3,x1(x2 + x3)+ x2x3,

x3(x1 + x2)+ x1x2) 29
f d (x1⊕ x2,x3(x1 + x2),x3) 30

Table 1: The 5 Boolean functions with smallest MT
when n = 3.

A syntactical analysis of the functions for n=3
does not help to understand how to build a Boolean
map with a small mixing time. However the iteration
graph of f ∗ (given in Figure 1) is the 3-cube in which
the cycle 000,100,101,001,011,111,110,010,000
has been removed. This cycle that visits each vertex
exactly once is usually denotes as Hamiltonian cycle.
We are now focusing on the generation of DSSC ma-
trices by removing Hamiltonian cycles of the n-cube.
This is the aims of the next section.

4 REMOVING HAMILTONIAN
CYCLES

This section addresses the problem of removing
an Hamiltonian path in the n-cube. The first theoret-
ical section shows that this approach produces DSSC
matrix, as wished. The motivation to focus on bal-
anced Gray code is then given in Sec. 4.2. We end this
section by recalling an algorithm that aims at comput-
ing such codes (Section 4.3).

4.1 Theoretical Aspects of Removing
Hamiltonian Cycles

We first have the following result on stochastic matrix
and n-cube without Hamiltonian cycle.

Theorem 2. The Markov Matrix M resulting from the
n-cube in which an Hamiltonian cycle is removed, is
doubly stochastic.

Proof. An Hamiltonian cycle visits each vertex ex-
actly once. For each vertex v in the n-cube, one ongo-
ing edge (o,v) and one outgoing edge (v,e) are thus
removed.

Let us consider the Markov matrix M of the n-
cube. It is obviously doubly stochastic. Since we
exactly remove one outgoing edge, the value of Mve
decreases from 1

n to 0 and Mvv is 1
n . The M ma-

trix is stochastic again. Similarly for ongoing edge,
since one ongoing edge is dropped for each vertex,
the value of Mov decreases from 1

n to 0. Moreover,
since Mvv is 1

n , the sum of values in column v is 1, and
M is doubly stochastic.

The following result states that the n-cube without
one Hamiltonian cycle has the awaited property with
regard to the connectivity.

Theorem 3. The iteration graph issued from the
n-cube where an Hamiltonian cycle is removed is
strongly connected.

Proof. We consider the reverse cycle r of the Hamil-
tonian cycle c. There is no edge that belongs to both
r and c: otherwise c would contain one vertex twice.
Thus, no edges of r has been removed. The cycle r is
obviously an Hamiltonian cycle and contains all the
nodes. Any node of the n-cube where c has been re-
moved can thus reach any node. The iteration graph
is thus strongly connected.

Removing an Hamiltonian cycle in the n-cube
solves thus the DSSC constraint. We are then left to
focus on the generation of Hamiltonian cycles in the
n-cube. Such a problem is equivalent to find Gray



codes, i.e., to find a sequence of 2n codewords (n-bits
strings) where two successive elements differ in only
one bit position. The next section is dedicated to these
codes.

4.2 Linking to (Totally) Balanced Gray
Codes

Many research works (Bhat and Savage, 1996,Zanten
and Suparta, 2004, Flahive and Bose, 2007) have ad-
dressed the subject of finding Gray codes. Since our
approach is based on removing a cycle, we are con-
cerned with cyclic Gray codes, i.e., sequences where
the last codeword differs in only one bit position from
the first one.

Let n be a given integer. As far as we know, the
exact number of Gray codes in Bn is not known but a
lower bound,(

n∗ log2
e log logn

∗ (1−o(1))
)2n

has been given in (Feder and Subi, 2009). For exam-
ple, when n is 6, such a number is larger than 1013.

To avoid this combinatorial explosion, we want to
restrict the generation to any Gray code such that the
induced graph of iteration Γ( f ) is “uniform”. In other
words, if we count in Γ( f ) the number of edges that
modify the bit i, for 1≤ i≤ n, all these values have to
be close to each other. Such an approach is equivalent
to restrict the search of cyclic Gray codes which are
uniform too.

This notion can be formalized as follows. Let
L = w1,w2, . . . ,w2n be the sequence of a n-bits cyclic
Gray code. Let S = s1,s2, . . . ,s2n be the transition
sequence where si, 1 ≤ i ≤ 2n indicates which bit
position changes between codewords at index i and
i+ 1 modulo 2n. Let TCn : {1, . . . ,n} → {0, . . . ,2n}
the transition count function that counts the num-
ber of times i occurs in S, i.e., the number of times
the bit i has been switched in L. The Gray code
is totally balanced if TCn is constant (and equal to
2n

n ). It is balanced if for any two bit indices i and j,
|TCn(i)−TCn( j)| ≤ 2.
Running example. Let L∗ =
000,100,101,001,011,111,110,010 be the Gray
code that corresponds to the Hamiltonian cycle that
has been removed in f ∗. Its transition sequence is
S = 3,1,3,2,3,1,3,2 and its transition count function
is TC3(1) = TC3(2) = 2 and TC3(3) = 4. Such a
Gray code is balanced.

Let now L4 =
0000,0010,0110,1110,1111,0111,0011,0001,0101,
0100,1100,1101,1001,1011,1010,1000
be a cyclic Gray code. Since S =

2,3,4,1,4,3,2,3,1,4,1,3,2,1,2,4 TC4 is equal
to 4 everywhere, this code is thus totally balanced.

On the contrary, for the stan-
dard 4-bits Gray code Lst =
0000,0001,0011,0010,0110,0111,0101,0100,1100,
1101,1111,1110,1010,1011,1001,1000, we have
TC4(1) = 8 TC4(2) = 4 TC4(3) = TC4(4) = 2 and
the code is neither balanced nor totally balanced.

4.3 Induction-Based Generation of
Balanced Gray Codes

The algorithm we adapt is based on the “Construction
B” (Zanten and Suparta, 2004) we recall now. This
method inductively constructs n-bits Gray code given
a n−2-bit Gray code.

It starts with the transition sequence Sn−2 of such
code.

1. Let l be an even positive integer. Find
u1,u2, . . . ,ul−2,v (maybe empty) subsequences of
Sn−2 such that Sn−2 is the concatenation of

si1 ,u0,si2 ,u1,si3 ,u2, ...,sil−1,ul−2,sil ,v

where i1 = 1, i2 = 2, and u0 = /0 (the empty se-
quence).

2. Replace in Sn−2 the sequences u0,u1,u2, . . . ,ul−2
by n−1,u′(u1,n−1,n),u′(u2,n,n−1),u′(u3,n−
1,n), . . . ,u′(ul−2,n,n − 1) respectively, where
u′(u,x,y) is the sequence u,x,uR,y,u such that uR

is u in reversed order. The obtained sequence is
further denoted as U .

3. Construct the sequences V = vR,n,v, W = n−
1,Sn−2,n, and let W ′ be W where the first two el-
ements have been exchanged.

4. The transition sequence Sn is thus the concatena-
tion UR,V,W ′.

It has been proven in (Zanten and Suparta, 2004)
that Sn is transition sequence of a cyclic n-bits Gray
code if Sn−2 is. However, the step 1 is not a construc-
tive step that precises how to select the subsequences
which ensures that yielded Gray code is balanced.

Let us now evaluate the number of subsequences
u than can be produced. Since si1 and si2 are well
defined, we have to chose the l − 2 elements of
s3,s4, . . . ,s2n−2 that become si3 , . . . ,sil . Let l = 2l′.
There are thus

#n =
2n−3

∑
l′=1

(
2n−2−2
2l′−2

)
distinct subsequences u. Numerical values of #n are
given in table 2. Even for small values of n, it is not



n 5 6 7 8 9
#n 31 8191 5.3e8 2.3e18 4.2e37
#′n 15 3003 1.4e8 4.5e17 1.6e36

Table 2: Number of distinct u subsequences.

reasonable to hope to evaluate the whole set of subse-
quences.

However, it is shown in the article that TCn(n−
1) and TCn(n) are equal to l. Since this step aims
at generating (totally) balanced Gray codes, we have
set l to be the largest even integer less or equal than
2n

n . This improvement allows to reduce the number of
subsequences to study. Examples of such cardinalities
are given in table 2 and are refered as #′n.

Finally, the table 3 gives the number of non-
equivalent functions issued from (totally) balanced
Gray codes that can be generated with the approach
presented in this article with respect to the number of
bits. In other words, it corresponds to the size of the
class of generators that can be produced.

n 3 4 5 6
nb. of functions 1 1 2 1332

Table 3: Number of Generators w.r.t. the number of
bits.

5 EXPERIMENTS

We present in Algorithm 2 the method that allows
to take any chaotic function as the core of a pseudo
random number generator. Among the parameters, it
takes the number b of minimal iterations that have to
be executed to get a uniform like distribution. For
function f and our experiments b is set with the value
given in the fourth column of Table 4.

Input: a function f , an iteration number b, an
initial configuration x0 (n bits)

Output: a configuration x (n bits)
x← x0;
for i = 0, . . . ,b−1 do

s← Random mod n;
x← (x− (x&(1 << s))+ f (x)&(1 << s));

end
return x;

Algorithm 2: Pseudo Code of the χ14Secrypt PRNG

For each number n = 4,6,8 of bits, we have gen-
erated all the functions according the method given
in Section 4. For each n, we have then restricted this

evaluation to the function whose Markov Matrix has
the smallest mixing time. Such functions are given in
Table 4. In this table, let us consider for instance the
function a© from B4 to B4 defined by the following
images : [13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8].
In other words, the image of 3 (0011) by a© is
14 (1110): it is obtained as the binary value of the
fourth element in the second list (namely 14).

5.1 NIST

In our experiments, 100 sequences (s = 100) of
1,000,000 bits are generated and tested. If the value
PT of any test is smaller than 0.0001, the sequences
are considered to be not good enough and the gener-
ator is unsuitable. Table 5 shows PT of sequences
based on discrete chaotic iterations using different
schemes. If there are at least two statistical values in
a test, this test is marked with an asterisk and the av-
erage value is computed to characterize the statistics.
We can see in Table 5 that all the rates are greater than
97/100, i. e., all the generators pass the NIST test.

5.2 DieHARD

Table 6 gives the results derived from applying the
DieHARD battery (Marsaglia, 1996) of tests to the
PRNGs considered in this work. As it can be ob-
served, all the generator presented in this document
can pass the DieHARD battery of tests.

5.3 TestU01

TestU01 (Simard and Montréal, 2007) is a software
library that provides general implementations of the
classical statistical tests for random number genera-
tors, as well as several others proposed in the litera-
ture, and some original ones. This library is currently
the most reputed and stringent one for testing the ran-
domness profile of a given sequence. TestU01 encom-
passes the NIST and DieHARD tests suites with 2 bat-
teries specific to hardware based generators (namely,
Rabbit and Alphabit). Its three core batteries of tests
are however SmallCrush, Crush, and BigCrush, clas-
sified according to their difficulty.

To date, we can claim after experiments that a©
generator is able to pass the 15 tests embedded into
the SmallCrush battery and it succedded too to pass
the 144 tests of the Crush one. BigCrush results on a©
are expected soon, while TestU01 has been launched
too on generators having the other iteration functions
detailed in this article.



Function f f (x), for x in (0,1,2, . . . ,2n−1) n b
a© [13, 10, 9, 14, 3, 11, 1, 12, 15, 4, 7, 5, 2, 6, 0, 8] 4 32

[55, 60, 45, 56, 58, 62, 61, 40, 53, 38, 52, 54, 35, 51, 33, 49, 39, 14,
b© 47, 46, 59, 43, 57, 44, 37, 6, 36, 4, 3, 50, 1, 48, 63, 26, 25, 30, 19, 6 49

27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 12, 29, 8, 10, 42, 41,
0, 15, 2, 7, 5, 11, 34, 9, 32]

[223, 250, 249, 254, 187, 234, 241, 252, 183, 230, 229, 180, 227, 178,
240, 248, 237, 236, 253, 172, 251, 238, 201, 224, 247, 166, 165, 244,
163, 242, 161, 225, 215, 220, 205, 216, 218, 222, 221, 208, 213, 210,
135, 196, 199, 132, 194, 130, 129, 200, 159, 186, 185, 190, 59, 170,

177, 188, 191, 246, 245, 52, 243, 50, 176, 184, 173, 46, 189, 174, 235,
42, 233, 232, 231, 38, 37, 228, 35, 226, 33, 168, 151, 156, 141, 152,
154, 158, 157, 144, 149, 146, 148, 150, 155, 147, 153, 145, 175, 14,

c© 143, 204, 11, 202, 169, 8, 7, 198, 197, 4, 195, 2, 1, 192, 255, 124, 8 75
109, 120, 107, 126, 125, 112, 103, 114, 116, 100, 123, 98, 121, 113, 79,

106, 111, 110, 75, 122, 97, 108, 71, 118, 117, 68, 115, 66, 96, 104,
127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76,
93, 72, 74, 78, 105, 64, 69, 102, 101, 70, 99, 67, 73, 65, 55, 60, 45,
56, 51, 62, 61, 48, 119, 182, 181, 53, 179, 54, 57, 49, 15, 44, 47, 40,
171, 58, 9, 32, 167, 6, 5, 164, 3, 162, 41, 160, 63, 26, 25, 30, 19, 27,
17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 10, 29, 140, 43, 138, 137,

12, 39, 134, 133, 36, 131, 34, 0, 128]

Table 4: Functions with DSCC Matrix and smallest MT

Table 5: NIST SP 800-22 test results (PT )

Method a© b© c©

Frequency (Monobit) 0.678 (0.99) 0.574 (0.99) 0.699 (0.96)

Frequency within a Block 0.102 (0.99) 0.816 (0.98) 0.419 (0.99)

Runs 0.171 (0.98) 0.657 (0.98) 0.554 (0.99)

Longest Run of Ones in a Block 0.115 (0.98) 0.534 (1.0) 0.534 (0.98)

Binary Matrix Rank 0.401 (0.97) 0.554 (0.99) 0.911 (0.99)

Discrete Fourier Transform (Spectral) 0.554 (0.98) 0.350 (0.98) 0.080 (0.99)

Non-overlapping Template Matching* 0.509 (0.990) 0.443 (0.990) 0.499 (0.989)

Overlapping Template Matching 0.437 (0.99) 0.699 (1.0) 0.236 (0.99)

Maurer’s "Universal Statistical" 0.171 (0.99) 0.000 (0.97) 0.657 (0.99)

Linear Complexity 0.171 (1.0) 0.637 (0.99) 0.834 (1.0)

Serial* (m=10) 0.435 (1.0) 0.565 (0.98) 0.592 (1.0)

Approximate Entropy (m=10) 0.137 (0.98) 0.867 (0.99) 0.062 (1.0)

Cumulative Sums (Cusum) * 0.580 (0.99) 0.368 (0.99) 0.569 (0.97)

Random Excursions * 0.245 (0.980) 0.421 (0.991) 0.656 (0.985)

Random Excursions Variant * 0.292 (0.991) 0.450 (0.990) 0.520 (0.996)

Success 15/15 15/15 15/15



Table 6: Results of DieHARD battery of tests

No.Test name Generators

a© b© c©

1 Overlapping Sum Pass Pass Pass
2 Runs Up 1 Pass Pass Pass

Runs Down 1 Pass Pass Pass
Runs Up 2 Pass Pass Pass
Runs Down 2 Pass Pass Pass

3 3D Spheres Pass Pass Pass
4 Parking Lot Pass Pass Pass
5 Birthday Spacing Pass Pass Pass
6 Count the ones 1 Pass Pass Pass
7 Binary Rank 6×8 Pass Pass Pass
8 Binary Rank 31×31 Pass Pass Pass
9 Binary Rank 32×32 Pass Pass Pass
10 Count the ones 2 Pass Pass Pass
11 Bit Stream Pass Pass Pass
12 Craps Wins Pass Pass Pass

Throws Pass Pass Pass
13 Minimum Distance Pass Pass Pass
14 Overlapping Perm. Pass Pass Pass
15 Squeeze Pass Pass Pass
16 OPSO Pass Pass Pass
17 OQSO Pass Pass Pass
18 DNA Pass Pass Pass

Number of tests passed 18 18 18

6 CONCLUSION

This article has presented a method to compute a
large class of truly chaotic PRNGs. First experiments
through the batteries of NIST, DieHard, and TestU01
have shown that the statistical properties are almost
established for n = 4,6,8. The iterated map inside
the generator is built by removing from a n-cube an
Hamiltonian path that corresponds to a (totally) bal-
anced Gray code. The number of balanced gray code
is large and each of them can be considered as a key
of the PRNG. However, many problems still remain
open, most important ones being listed thereafter.

The first one involves the function to iterate. Pro-
ducing a DSSC matrix is indeed necessary and suf-
ficient but is not linked with the convergence rate to
the uniform distribution. To solve this problem, we

have proposed to remove from the n-cube an Hamil-
tonian path that is a (totally) balanced Gray code. We
do not have proven that this proposal is the one that
minimizes the mixing time. This optimization task is
an open problem we plan to study.

Secondly, the approach depends on finding (to-
tally) balanced Gray codes. Even if such codes exist
for all even numbers, there is no constructive method
to built them when n is large, as far as we know. These
two open problems will be investigated in a future
work.
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