
1 Mathematical Backgroung

Let π, µ be two distribution on a same set Ω. The total variation distance between π and µ is
denoted ‖π − µ‖TV and is de�ned by

‖π − µ‖TV = max
A⊂Ω
|π(A)− µ(A)|.

It is known that

‖π − µ‖TV =
1

2

∑
x∈Ω

|π(x)− µ(x)|.

Moreover, if ν is a distribution on Ω, one has

‖π − µ‖TV ≤ ‖π − ν‖TV + ‖ν − µ‖TV

Let P be the matrix of a markov chain on Ω. P (x, ·) is the distribution induced by the x-th
row of P . If the markov chain induced by P has a stationary distribution π, then we de�ne

d(t) = max
x∈Ω
‖P t(x, ·)− π‖TV,

and

tmix(ε) = min{t | d(t) ≤ ε}.

One can prove that

tmix(ε) ≤ dlog2(ε−1)etmix(
1

4
)

Let (Xt)t∈N be a sequence of Ω valued random variables. A N-valued random variable τ is a
stopping time for the sequence (Xi) if for each t there exists Bt ⊆ ωt+1 such that {tau = t} =
{(X0, X1, . . . , Xt) ∈ Bt}.

Let (Xt)t∈N be a markov chain and f(Xt−1, Zt) a random mapping representation of the markov
chain. A randomized stopping time for the markov chain is a stopping time for (Zt)t∈N. It he markov
chain is irreductible and has π as stationary distribution, then a stationay time τ is a randomized
stopping time (possibily depending on the starting position x), such that the distribution of Xτ is
π:

Px(Xτ = y) = π(y).

Proposition 1 If τ is a strong stationary time, then d(t) ≤ maxx∈Ω Px(τ > t).

2 Random walk on the modi�ed Hypercube

Let Ω = {0, 1}N be the set of words of length N . Let E = {(x, y) | x ∈ Ω, y ∈ Ω, x = y or x⊕ y ∈
0∗10∗}. Let h be a function from Ω into {1, . . . , N}.

We denote by Eh the set E \ {(x, y) | x⊕ y = 0N−h(x)10h(x)−1}. We de�ne the matrix Ph has
follows:  Ph(x, y) = 0 if (x, y) /∈ Eh

Ph(x, x) = 1
2 + 1

2N
Ph(x, x) = 1

2N otherwise

We denote by h the function from Ω into ω de�ned by x⊕h(x) = 0N−h(x)10h(x)−1. The function
h is said square-free if for every x ∈ E, h(h(x)) 6= x.

Lemma 2 If h is bijective and square-free, then h(h
−1

(x)) 6= h(x).
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Proof.

2

Let Z be a random variable over {1, . . . , N} × {0, 1} uniformaly distributed. For X ∈ Ω, we
de�ne, with Z = (i, x),{

f(X,Z) = X ⊕ (0N−i10i−1) if x = 1 and i 6= h(X),
f(X,Z) = X otherwise.

3 Stopping time

An integer ` ∈ {1, . . . , N} is said fair at time t if there exists 0 ≤ j < t such that Zj = (`, ·) and
h(Xj) 6= `.

Let τstop be the �rst time all the elements of {1, . . . , N} are fair. The integer τstop is a random-
ized stopping time for the markov chain (Xt).

Lemma 3 The integer τstop is a strong stationnary time.

Proof. Let τ` be the �rst time that ` is fair. The random variable Zτ`−1 is of the form (`, δ)
with δ ∈ {0, 1} and δ = 1 with probability 1

2 and δ = 0 with probability 1
2 . Since h(Xτ`−1) 6= `

the value of the `-th bit of Xτ` is δ. Moving next in the chain, at each step, the l-th bit is switch
from 0 to 1 or from 1 to 0 each time with the same probability. Therefore, for t ≥ τ`, the `-th bit
of Xt is 0 or 1 with the same probability, proving the lemma. 2

Proposition 4 If h is bijective and square-free, then E[τstop] ≤ 8N2 +N ln(N + 1).

For each x ∈ Ω and ` ∈ {1, . . . , N}, let Sx,` be the random variable counting the number of
steps done until reaching from x a state where ` is fair. More formaly

Sx,` = min{m ≥ 1 | h(Xm) 6= ` and Zm = ` and X0 = x}.

We denote by
λh = max

x,`
Sx,`.

Lemma 5 If h is a square-free bijective function, then one has E[λh] ≤ 8N2.

Proof. For every X, every `, one has P(SX,` ≤ 2) ≥ 1
4N2 . Let X0 = X. Indeed, if h(X) 6= `,

then P(SX,` = 1) = 1
2N ≥

1
4N2 . If h(X) = `, then P(SX,` = 1) = 0. But in this case, intutively,

it is possible to move from X to h
−1

(X) (with probability 1
2N ). And in h

−1
(X) the l-th bit is

switchable. More fromaly, since h is square-free, h(x) = h(h(h
−1

(X))) 6= h
−1

(X). It follows that

(X,h
−1

(X)) ∈ Eh. Thefore P (X1 = h
−1

(X)) = 1
2N . Now, by Lemma 2, h(h

−1
(X)) 6= h(X).

Therefore P(Sx,` = 2 | X1 = h
−1

(X)) = 1
2N , proving that P(Sx,` ≤ 2) ≥ 1

4N2 .
Therefore, P(Sx,` ≥ 3) ≤ 1 − 1

4N2 . By induction, one has, for every i, P(Sx,` ≥ 2i + 1) ≤(
1− 1

4N2

)i
. Moreover, since SX,` is positive, it is known [?, lemma 2.9], that

E[SX,`] =

+∞∑
i=1

P(SX,` ≥ i).

Since P(SX,` ≥ i) ≥ P(SX,` ≥ i+ 1), one has

E[SX,`] =

+∞∑
i=1

P(SX,` ≥ i) ≤ P(SX,` ≥ 1) + P(SX,` ≥ 2) + 2

+∞∑
i=1

P(Sx,` ≥ 2i).
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Consequently,

E[Sx,`] ≤ 1 + 1 + 2

+∞∑
i=1

(
1− 1

4N2

)i
= 2 + 2(4N2 − 1) = 8N2,

which concludes the proof. 2

Let τ ′stop be the �rst time that there are exactly N − 1 fair elements.

Lemma 6 One has E[τ ′stop] ≤ N ln(N + 1).

Proof. This is a classical Coupon Collector's like problem. Let Wi be the random variable
counting the number of moves done in the markov chain while we had exactly i− 1 fair bits. One
has τ ′stop =

∑N−1
i=1 Wi. But when we are at position x with i − 1 fair bits, the probability of

obtaining a new fair bit is either 1− i−1
N if h(x) is fair, or 1− i−2

N if h(x) is not fair. It follows that

E[Wi] ≤ N
N−i+2 . Therefore

E[τ ′stop] =

N−1∑
i=1

E[Wi] ≤ N
N−1∑
i=1

1

N − i+ 2
= N

N+1∑
i=3

1

i
.

But
∑N+1
i=1

1
i ≤ 1 + ln(N + 1). It follows that 1 + 1

2 +
∑N+1
i=3

1
i ≤ 1 + ln(N + 1). Consequently,

E[τ ′stop] ≤ N(− 1
2 + ln(N + 1)) ≤ N ln(N + 1). 2

One can now prove Proposition 4.
Proof. One has τstop ≤ τ ′stop + λh. Therefore, Proposition 4 is a direct application of lemma 5
and 6. 2

3


