1 Mathematical Backgroung

Let π , μ be two distribution on a same set Ω . The total variation distance between π and μ is denoted $\|\pi - \mu\|_{\text{TV}}$ and is defined by

$$\|\pi - \mu\|_{\mathrm{TV}} = \max_{A \subset \Omega} |\pi(A) - \mu(A)|.$$

It is known that

$$\|\pi - \mu\|_{\mathrm{TV}} = \frac{1}{2} \sum_{x \in \Omega} |\pi(x) - \mu(x)|.$$

Moreover, if ν is a distribution on Ω , one has

$$\|\pi - \mu\|_{\rm TV} \le \|\pi - \nu\|_{\rm TV} + \|\nu - \mu\|_{\rm TV}$$

Let P be the matrix of a markov chain on Ω . $P(x, \cdot)$ is the distribution induced by the x-th row of P. If the markov chain induced by P has a stationary distribution π , then we define

$$d(t) = \max_{x \in \Omega} \|P^t(x, \cdot) - \pi\|_{\mathrm{TV}}$$

 and

$$t_{\min}(\varepsilon) = \min\{t \mid d(t) \le \varepsilon\}.$$

One can prove that

$$t_{\min}(\varepsilon) \le \lceil \log_2(\varepsilon^{-1}) \rceil t_{\min}(\frac{1}{4})$$

Let $(X_t)_{t\in\mathbb{N}}$ be a sequence of Ω valued random variables. A \mathbb{N} -valued random variable τ is a stopping time for the sequence (X_i) if for each t there exists $B_t \subseteq \omega^{t+1}$ such that $\{tau = t\} = \{(X_0, X_1, \ldots, X_t) \in B_t\}$.

Let $(X_t)_{t\in\mathbb{N}}$ be a markov chain and $f(X_{t-1}, Z_t)$ a random mapping representation of the markov chain. A randomized stopping time for the markov chain is a stopping time for $(Z_t)_{t\in\mathbb{N}}$. It he markov chain is irreductible and has π as stationary distribution, then a stationary time τ is a randomized stopping time (possibily depending on the starting position x), such that the distribution of X_{τ} is π :

$$\mathbb{P}_x(X_\tau = y) = \pi(y).$$

Proposition 1 If τ is a strong stationary time, then $d(t) \leq \max_{x \in \Omega} \mathbb{P}_x(\tau > t)$.

2 Random walk on the modified Hypercube

Let $\Omega = \{0, 1\}^N$ be the set of words of length N. Let $E = \{(x, y) \mid x \in \Omega, y \in \Omega, x = y \text{ or } x \oplus y \in 0^*10^*\}$. Let h be a function from Ω into $\{1, \ldots, N\}$.

We denote by E_h the set $E \setminus \{(x, y) \mid x \oplus y = 0^{N-h(x)} 10^{h(x)-1}\}$. We define the matrix P_h has follows:

$$\begin{cases} P_h(x,y) = 0 & \text{if } (x,y) \notin E_h\\ P_h(x,x) = \frac{1}{2} + \frac{1}{2N} & \\ P_h(x,x) = \frac{1}{2N} & \text{otherwise} \end{cases}$$

We denote by \overline{h} the function from Ω into ω defined by $x \oplus \overline{h}(x) = 0^{N-h(x)} 10^{h(x)-1}$. The function \overline{h} is said square-free if for every $x \in E$, $\overline{h}(\overline{h}(x)) \neq x$.

Lemma 2 If \overline{h} is bijective and square-free, then $h(\overline{h}^{-1}(x)) \neq h(x)$.

PROOF.

Let Z be a random variable over $\{1, \ldots, N\} \times \{0, 1\}$ uniformaly distributed. For $X \in \Omega$, we define, with Z = (i, x),

$$\left\{ \begin{array}{ll} f(X,Z) = X \oplus (0^{N-i}10^{i-1}) & \text{if } x = 1 \text{ and } i \neq h(X), \\ f(X,Z) = X & \text{otherwise.} \end{array} \right.$$

3 Stopping time

An integer $\ell \in \{1, \ldots, N\}$ is said fair at time t if there exists $0 \leq j < t$ such that $Z_j = (\ell, \cdot)$ and $h(X_j) \neq \ell.$

Let τ_{stop} be the first time all the elements of $\{1, \ldots, N\}$ are fair. The integer τ_{stop} is a randomized stopping time for the markov chain (X_t) .

Lemma 3 The integer τ_{stop} is a strong stationnary time.

PROOF. Let τ_{ℓ} be the first time that ℓ is fair. The random variable $Z_{\tau_{\ell}-1}$ is of the form (ℓ, δ) with $\delta \in \{0,1\}$ and $\delta = 1$ with probability $\frac{1}{2}$ and $\delta = 0$ with probability $\frac{1}{2}$. Since $h(X_{\tau_{\ell}-1}) \neq \ell$ the value of the l-th bit of $X_{\tau_{\ell}}$ is δ . Moving next in the chain, at each step, the l-th bit is switch from 0 to 1 or from 1 to 0 each time with the same probability. Therefore, for $t \ge \tau_{\ell}$, the ℓ -th bit of X_t is 0 or 1 with the same probability, proving the lemma.

Proposition 4 If \overline{h} is bijective and square-free, then $E[\tau_{\text{stop}}] \leq 8N^2 + N \ln(N+1)$.

For each $x \in \Omega$ and $\ell \in \{1, \ldots, N\}$, let $S_{x,\ell}$ be the random variable counting the number of steps done until reaching from x a state where ℓ is fair. More formaly

 $S_{x,\ell} = \min\{m \ge 1 \mid h(X_m) \neq \ell \text{ and } Z_m = \ell \text{ and } X_0 = x\}.$

We denote by

$$\lambda_h = \max_{x \ \ell} S_{x,\ell}.$$

Lemma 5 If \overline{h} is a square-free bijective function, then one has $E[\lambda_h] \leq 8N^2$.

PROOF. For every X, every ℓ , one has $\mathbb{P}(S_{X,\ell} \leq 2) \geq \frac{1}{4N^2}$. Let $X_0 = X$. Indeed, if $h(X) \neq \ell$, then $\mathbb{P}(S_{X,\ell} = 1) = \frac{1}{2N} \geq \frac{1}{4N^2}$. If $h(X) = \ell$, then $\mathbb{P}(S_{X,\ell} = 1) = 0$. But in this case, intuively, it is possible to move from X to $\overline{h}^{-1}(X)$ (with probability $\frac{1}{2N}$). And in $\overline{h}^{-1}(X)$ the *l*-th bit is switchable. More fromaly, since \overline{h} is square-free, $\overline{h}(x) = \overline{h}(\overline{h}(\overline{h}^{-1}(X))) \neq \overline{h}^{-1}(X)$. It follows that $(X, \overline{h}^{-1}(X)) \in E_h$. Thefore $P(X_1 = \overline{h}^{-1}(X)) = \frac{1}{2N}$. Now, by Lemma 2, $h(\overline{h}^{-1}(X)) \neq h(X)$. Therefore, $\mathbb{P}(S_{x,\ell} = 2 \mid X_1 = \overline{h}^{-1}(X)) = \frac{1}{2N}$, proving that $\mathbb{P}(S_{x,\ell} \le 2) \ge \frac{1}{4N^2}$. Therefore, $\mathbb{P}(S_{x,\ell} \ge 3) \le 1 - \frac{1}{4N^2}$. By induction, one has, for every i, $\mathbb{P}(S_{x,\ell} \ge 2i + 1) \le 1 - \frac{1}{4N^2}$.

 $\left(1-\frac{1}{4N^2}\right)^i$. Moreover, since $S_{X,\ell}$ is positive, it is known [?, lemma 2.9], that

$$E[S_{X,\ell}] = \sum_{i=1}^{+\infty} \mathbb{P}(S_{X,\ell} \ge i).$$

Since $\mathbb{P}(S_{X,\ell} \ge i) \ge \mathbb{P}(S_{X,\ell} \ge i+1)$, one has

$$E[S_{X,\ell}] = \sum_{i=1}^{+\infty} \mathbb{P}(S_{X,\ell} \ge i) \le \mathbb{P}(S_{X,\ell} \ge 1) + \mathbb{P}(S_{X,\ell} \ge 2) + 2\sum_{i=1}^{+\infty} \mathbb{P}(S_{x,\ell} \ge 2i).$$

Consequently,

$$E[S_{x,\ell}] \le 1 + 1 + 2\sum_{i=1}^{+\infty} \left(1 - \frac{1}{4N^2}\right)^i = 2 + 2(4N^2 - 1) = 8N^2,$$

which concludes the proof.

Let τ'_{stop} be the first time that there are exactly N-1 fair elements.

Lemma 6 One has $E[\tau'_{stop}] \leq N \ln(N+1)$.

PROOF. This is a classical Coupon Collector's like problem. Let W_i be the random variable counting the number of moves done in the markov chain while we had exactly i-1 fair bits. One has $\tau'_{\text{stop}} = \sum_{i=1}^{N-1} W_i$. But when we are at position x with i-1 fair bits, the probability of obtaining a new fair bit is either $1 - \frac{i-1}{N}$ if h(x) is fair, or $1 - \frac{i-2}{N}$ if h(x) is not fair. It follows that $E[W_i] \leq \frac{N}{N-i+2}$. Therefore

$$E[\tau'_{\text{stop}}] = \sum_{i=1}^{N-1} E[W_i] \le N \sum_{i=1}^{N-1} \frac{1}{N-i+2} = N \sum_{i=3}^{N+1} \frac{1}{i}.$$

But $\sum_{i=1}^{N+1} \frac{1}{i} \leq 1 + \ln(N+1)$. It follows that $1 + \frac{1}{2} + \sum_{i=3}^{N+1} \frac{1}{i} \leq 1 + \ln(N+1)$. Consequently, $E[\tau'_{\text{stop}}] \leq N(-\frac{1}{2} + \ln(N+1)) \leq N \ln(N+1)$.

One can now prove Proposition 4.

PROOF. One has $\tau_{\text{stop}} \leq \tau'_{\text{stop}} + \lambda_h$. Therefore, Proposition 4 is a direct application of lemma 5 and 6.