
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Random Walk in a N-cube Without Hamiltonian
Cycle to Chaotic Pseudorandom Number

Generation: Theoretical and Practical Considerations
Sylvain Contassot-Vivier, Jean-François Couchot, Christophe Guyeux, Pierre-Cyrille Heam

Abstract—Designing a pseudorandom number generator
(PRNG) is a hard and complex task. Many recent works have
consider chaotic functions as the basis of built PRNGs: the quality
of the output would be an obvious consequence of some chaos
properties. However, there is no direct reasoning that goes from
chaotic functions to uniform distribution of the output. Moreover,
it is not clear that embedding such kind of functions into a
PRNG allows to get a chaotic output, which could be required
for simulating some chaotic behaviours.

In a previous work, some of the authors have proposed the
idea of walking into a N-cube where a balanced Hamiltonian
cycle have been removed as the basis of a chaotic PRNG. In
this article, all the difficult issues observed in the previous work
have been tackled. The chaotic behavior of the whole PRNG is
proven. The construction of the balanced Hamiltonian cycle is
theoretically and practically solved. A upper bound of the length
of the walk to obtain a uniform distribution is calculated. Finally
practical experiments show that the generators successfully pass
the classical statistical tests.

I. INTRODUCTION

The exploitation of chaotic systems to generate pseudoran-
dom sequences is a hot topic [1], [2], [3]. Such systems are
fundamentally chosen due to their unpredictable character and
their sensitiveness to initial conditions. In most cases, these
generators simply consist in iterating a chaotic function like
the logistic map [1], [2] or the Arnold’s one [3]. . . It thus
remains to find optimal parameters in such functions so that
attractors are avoided, hoping by doing so that the generated
numbers follow a uniform distribution. In order to check the
quality of the produced outputs, it is usual to test the PRNGs
(Pseudo-Random Number Generators) with statistical batteries
like the so-called DieHARD [4], NIST [5], or TestU01 [6]
ones.

In its general understanding, chaos notion is often reduced
to the strong sensitiveness to the initial conditions (the well
known “butterfly effect”): a continuous function k defined on a
metrical space is said strongly sensitive to the initial conditions
if for each point x and each positive value ε, it is possible to
find another point y as close as possible to x, and an integer
t such that the distance between the t-th iterates of x and
y, denoted by kt(x) and kt(y), are larger than ε. However,
in his definition of chaos, Devaney [7] imposes to the chaotic
function two other properties called transitivity and regularity.
Functions evoked above have been studied according to these
properties, and they have been proven as chaotic on R. But

LORIA, Université de Lorraine, Nancy, France
FEMTO-ST Institute, University of Franche-Comté, Belfort, France

nothing guarantees that such properties are preserved when
iterating the functions on floating point numbers, which is the
domain of interpretation of real numbers R on machines.

To avoid this lack of chaos, we have previously presented
some PRNGs that iterate continuous functions Gf on a dis-
crete domain {1, . . . , n}N × {0, 1}n, where f is a Boolean
function (i.e., f : {0, 1}N → {0, 1}N). These generators
are CIPRNG1

f (u) [8], [9], CIPRNG2
f (u, v) [10] and χ14Secrypt

[11] where CI means Chaotic Iterations. We have firstly
proven in [9] that, to establish the chaotic nature of algorithm
CIPRNG1

f , it is necessary and sufficient that the asynchronous
iterations are strongly connected. We then have proven that it
is necessary and sufficient that the Markov matrix associated
to this graph is doubly stochastic, in order to have a uniform
distribution of the outputs. We have finally established suffi-
cient conditions to guarantee the first property of connectivity.
Among the generated functions, we thus have considered for
further investigations only the ones that satisfy the second
property too.

However, it cannot be directly deduced that χ14Secrypt is
chaotic since we do not output all the successive values of
iterating Gf . This algorithm only displays a subsequence xb.n

of a whole chaotic sequence xn and it is indeed not correct
that the chaos property is preserved for any subsequence of a
chaotic sequence. This article presents conditions to preserve
this property.

Finding a Boolean function which provides a strongly
connected iteration graph having a doubly stochastic Markov
matrix is however not an easy task. We have firstly proposed
in [9] a generate-and-test based approach that solves this issue.
However, this one was not efficient enough. Thus, a second
scheme has been further presented in [11] by remarking that
a N-cube where an Hamiltonian cycle (or equivalently a Gray
code) has been removed is strongly connected and has a
doubly stochastic Markov matrix.

However, the removed Hamiltonian cycle has a great influ-
ence in the quality of the output. For instance, if this one one is
not balanced (i.e., the number of changes in different bits are
completely different), some bits would be hard to switch. This
article shows an effective algorithm that efficiently implements
the previous scheme and provides thus functions issued from
removing in the N-cube a balanced Hamiltonian cycle.

The length b of the walk to reach a distribution close to
the uniform one would be dramatically long. This article
theoretically and practically studies the length b until the cor-
responding Markov chain is close to the uniform distribution.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Finally, the ability of the approach to face classical tests suite
is evaluated.

The remainder of this article is organized as follows. The
next section is devoted to preliminaries, basic notations, and
terminologies regarding Boolean map iterations. Then, in
Section III, Devaney’s definition of chaos is recalled while
the proofs of chaos of our most general PRNGs is provided.
This is the first major contribution. Section IV recalls a gen-
eral scheme to obtain functions with awaited behavior. Main
theorems are recalled to make the document self-content. The
next section (Sect. V) presents an algorithm that implements
this scheme and proves it always produces a solution. This
is the second major contribution The later section (Sect. VI)
defines the theoretical framework to study the mixing-time,
i.e., time until reaching a uniform distribution. It proves that
this one is at worth quadratic in the number of elements.
Experiments show that the bound is practically largely much
lower. This is the third major contribution. The Section VII
gives practical results on evaluating the PRNG against the
NIST suite. This research work ends by a conclusion section,
where the contribution is summarized and intended future
work is outlined.

II. PRELIMINARIES

In what follows, we consider the Boolean algebra on the set
B = {0, 1} with the classical operators of conjunction ’.’, of
disjunction ’+’, of negation ’ ’, and of disjunctive union ⊕.

Let us first introduce basic notations. Let N be a positive
integer. The set {1, 2, . . . ,N} of integers belonging between
1 and N is further denoted as J1,NK. A Boolean map f is a
function from BN to itself such that x = (x1, . . . , xN) maps
to f(x) = (f1(x), . . . , fN(x)). In what follows, for any finite
set X , |X| denotes its cardinality and byc is the largest integer
lower than y.

Functions are iterated as follows. At the tth iteration,
only the st−th component is said to be “iterated”, where
s = (st)t∈N is a sequence of indices taken in J1;NK called
“strategy”. Formally, let Ff : BN × J1;NK to BN be defined
by

Ff (x, i) = (x1, . . . , xi−1, fi(x), xi+1, . . . , xN).

Then, let x0 ∈ BN be an initial configuration and s ∈ J1;NKN
be a strategy, the dynamics are described by the recurrence

xt+1 = Ff (xt, st). (1)

Let be given a Boolean map f . Its associated iteration graph
Γ(f) is the directed graph such that the set of vertices is BN,
and for all x ∈ BN and i ∈ J1;NK, the graph Γ(f) contains
an arc from x to Ff (x, i). Each arc (x, Ff (x, i)) is labelled
with i.

Running Example. Let us consider for instance N = 3. Let
f∗ : B3 → B3 be defined by f∗(x1, x2, x3) = (x2⊕x3, x1x3+
x1x2, x1x3+x1x2). The iteration graph Γ(f∗) of this function
is given in Figure 1.

Let us finally recall the pseudorandom number generator
χ14Secrypt [11] formalized in Algorithm 1. It is based on random

0001

001

3

010
2

3

2

101

1 2

011

3

110

1

2

3

1

100

1

3 2

3

1 1112

2 1

3

1

2
3

Figure 1: Iteration Graph Γ(f∗) of the function f∗

walks in Γ(f). More precisely, let be given a Boolean map
f : BN → BN, an input PRNG Random, an integer b
that corresponds to a number of iterations, and an initial
configuration x0. Starting from x0, the algorithm repeats b
times a random choice of which edge to follow and traverses
this edge. The final configuration is thus outputted.

Input: a function f , an iteration number b, an initial configuration x0 (N bits)
Output: a configuration x (N bits)
x← x0;
for i = 0, . . . , b− 1 do

s← Random(N);
x← Ff (x, s);

end
return x;

Algorithm 1: Pseudo Code of the χ14Secrypt PRNG

Based on this setup, we can study the chaos properties of
these function. This is the aims of the next section.

III. PROOF OF CHAOS

Let us us first recall the chaos theoretical context presented
in [9]. In this article, the space of interest is BN × J1;NKN
and the iteration function Hf is the map from BN × J1;NKN
to itself defined by

Hf (x, s) = (Ff (x, s0), σ(s)).

In this definition, σ : J1;NKN −→ J1;NKN is a shift operation
on sequences (i.e., a function that removes the first element of
the sequence) formally defined with

σ((uk)k∈N) = (uk+1)k∈N.

We have proven [9, Theorem 1] that Hf is chaotic in BN×
J1;NKN if and only if Γ(f) is strongly connected. However,
the corrolary which would say that χ14Secrypt is chaotic cannot
be directly deduced since we do not output all the successive
values of iterating Ff . Only a a few of them is concerned
and any subsequence of a chaotic sequence is not necessarily
a chaotic sequence too. This necessitates a rigorous proof,
which is the aim of this section.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

A. Devaney’s Chaotic Dynamical Systems

Consider a topological space (X , τ) and a continuous func-
tion f : X → X .

Definition 1. The function f is said to be topologically
transitive if, for any pair of open sets U, V ⊂ X , there exists
k > 0 such that fk(U) ∩ V 6= ∅.

Definition 2. An element x is a periodic point for f of period
n ∈ N∗ if fn(x) = x.

Definition 3. f is said to be regular on (X , τ) if the set of
periodic points for f is dense in X : for any point x in X ,
any neighborhood of x contains at least one periodic point
(without necessarily the same period).

Definition 4 (Devaney’s formulation of chaos [7]). The func-
tion f is said to be chaotic on (X , τ) if f is regular and
topologically transitive.

The chaos property is strongly linked to the notion of
“sensitivity”, defined on a metric space (X , d) by:

Definition 5. The function f has sensitive dependence on
initial conditions if there exists δ > 0 such that, for any x ∈ X
and any neighborhood V of x, there exist y ∈ V and n > 0
such that d (fn(x), fn(y)) > δ.

The constant δ is called the constant of sensitivity of f .

Indeed, Banks et al. have proven in [12] that when f is
chaotic and (X , d) is a metric space, then f has the property
of sensitive dependence on initial conditions (this property was
formerly an element of the definition of chaos).

B. A Metric Space for PRNG Iterations

Let us first introduce P ⊂ N a finite nonempty set having
the cardinality p ∈ N∗. Intuitively, this is the set of authorized
numbers of iterations. Denote by p1, p2, . . . , pp the ordered
elements of P: P = {p1, p2, . . . , pp} and p1 < p2 < . . . < pp.
In our algorithm, p is 1 and p1 is b.

The Algorithm 1 may be seen as b functional composition of
Ff . However, it can be generalized with pi, pi ∈ P , functional
compositions of Ff . Thus, for any pi ∈ P we introduce the
function Ff,pi : BN × J1,NKpi → BN defined by

Ff,pi(x, (u
0, u1, . . . , upi−1)) 7→

Ff (. . . (Ff (Ff (x, u0), u1), . . .), upi−1).

The considered space is XN,P = BN×SN,P , where SN,P =
J1,NKN × PN. Each element in this space is a pair where
the first element is N-uple in BN, as in the previous space.
The second element is a pair ((uk)k∈N, (v

k)k∈N) of infinite
sequences. The sequence (vk)k∈N defines how many iterations
are executed at time k between two outputs. The sequence
(uk)k∈N defines which elements is modified.

Let us define the shift function Σ for any element of SN,P .

Σ : SN,P → SN,P(
(uk)k∈N, (v

k)k∈N
)
7→

(
σv

0 (
(uk)k∈N

)
,

σ
(
(vk)k∈N

))
.

In other words, Σ receives two sequences u and v, and it
operates v0 shifts on the first sequence and a single shift on
the second one. Let
Gf : XN,P → XN,P

(e, (u, v)) 7→
(
Ff,v0

(
e, (u0, . . . , uv

0−1
)
,Σ(u, v)

)
.

(2)
Then the outputs (y0, y1, . . .) produced by the CIPRNG2

f (u, v)
generator are the first components of the iterations X0 =
(x0, (u, v)) and ∀n ∈ N, Xn+1 = Gf (Xn) on XN,P .

C. A metric on XN,P

We define a distance d on XN,P as follows. Consider x =
(e, s) and x̌ = (ě, š) in XN,P = BN × SN,P , where s = (u, v)
and š = (ǔ, v̌) are in SN,P = SJ1,NK × SP .
• e and ě are integers belonging in J0, 2N−1K. The Ham-

ming distance on their binary decomposition, that is, the
number of dissimilar binary digits, constitutes the integral
part of d(X, X̌).

• The fractional part is constituted by the differences be-
tween v0 and v̌0, followed by the differences between
finite sequences u0, u1, . . . , uv

0−1 and ǔ0, ǔ1, . . . , ǔv̌
0−1,

followed by differences between v1 and v̌1, followed
by the differences between uv

0

, uv
0+1, . . . , uv

1−1 and
ǔv̌

0

, ǔv̌
0+1, . . . , ǔv̌

1−1, etc. More precisely, let p =
blog10 (maxP)c+ 1 and n = blog10 (N)c+ 1.

– The p first digits of d(x, x̌) is |v0 − v̌0| written in
decimal numeration (and with p digits).

– The next n × max (P) digits aim at measur-
ing how much u0, u1, . . . , uv

0−1 differs from
ǔ0, ǔ1, . . . , ǔv̌

0−1. The n first digits are |u0 − ǔ0|.
They are followed by |u1− ǔ1| written with n digits,
etc.
∗ If v0 = v̌0, then the process is continued until
|uv0−1−ǔv̌0−1| and the fractional part of d(X, X̌)
is completed by 0’s until reaching p+n×max (P)
digits.

∗ If v0 < v̌0, then the max (P) blocs of n digits are
|u0−ǔ0|, ..., |uv0−1−ǔv0−1|, ǔv0 (on n digits), ...,
ǔv̌

0−1 (on n digits), followed by 0’s if required.
∗ The case v0 > v̌0 is dealt similarly.

– The next p digits are |v1 − v̌1|, etc.

Running Example. Consider for instance that N = 13, P =

{1, 2, 11} (so p = 2), and that s =

{
u = 6, 11, 5, ...
v = 1, 2, ...

while

š =

{
ǔ = 6, 4 1, ...
v̌ = 2, 1, ...

.

So dSN,P (s, š) = 0.0100040000000000000000000110
05... Indeed, the p = 2 first digits are 01, as |v0 − v̌0| = 1,
and we use p digits to code this difference (P being {1, 2, 11},
this difference can be equal to 10). We then take the v0 = 1
first terms of u, each term being coded in n = 2 digits,
that is, 06. As we can iterate at most max (P) times, we
must complete this value by some 0’s in such a way that
the obtained result has n × max (P) = 22 digits, that
is: 0600000000000000000000. Similarly, the v̌0 = 2 first
terms in ǔ are represented by 0604000000000000000000,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

and the absolute value of their difference is equal to
0004000000000000000000. These digits are concatenated to
01, and we start again with the remainder of the sequences.

Running Example. Consider now that N = 9, and P =
{2, 7}, and that

s =

{
u = 6, 7, 4, 2,...
v = 2, 2, ...

while š ={
ǔ = 4, 9, 6, 3, 6, 6, 7, 9, 8, ...
v̌ = 7, 2, ...
So dSN,P (s, š) = 0.5173633305600000..., as |v0 − v̌0| = 5,

|4963667 − 6700000| = 1736333, |v1 − v̌1| = 0, and
|9800000− 4200000| = 5600000.

d can be more rigorously written as follows:

d(x, x̌) = dSN,P (s, š) + dBN(e, ě),

where:
• dBN is the Hamming distance,
• ∀s = (u, v), š = (ǔ, v̌) ∈ SN,P ,

dSN,P (s, š) =∑∞
k=0

1

10(k+1)p+knmax (P)

(
|vk − v̌k|

+

∣∣∣∣∣∑vk−1
l=0

u
∑k−1
m=0 v

m+l

10(l+1)n
−
∑v̌k−1
l=0

ǔ
∑k−1
m=0 v̌

m+l

10(l+1)n

∣∣∣∣∣
)

Let us show that,

Proposition 1. d is a distance on XN,P .

Proof. dBN is the Hamming distance. We will prove that dSN,P
is a distance too, thus d will also be a distance, being the sum
of two distances.
• Obviously, dSN,P (s, š) > 0, and if s = š, then
dSN,P (s, š) = 0. Conversely, if dSN,P (s, š) = 0, then
∀k ∈ N, vk = v̌k due to the definition of d. Then, as
digits between positions p + 1 and p + n are null and
correspond to |u0 − ǔ0|, we can conclude that u0 = ǔ0.
An extension of this result to the whole first n×max (P)
bloc leads to ui = ǔi, ∀i 6 v0 = v̌0, and by checking
all the n×max (P) blocs, u = ǔ.

• dSN,P is clearly symmetric (dSN,P (s, š) = dSN,P (š, s)).
• The triangle inequality is obtained because the absolute

value satisfies it too.

Before being able to study the topological behavior of the
general chaotic iterations, we must first establish that:

Proposition 2. For all f : BN −→ BN, the function Gf is
continuous on (X , d).

Proof. We will show this result by using the sequential conti-
nuity. Consider a sequence xn = (en, (un, vn)) ∈ XNN,P such
that d(xn, x) −→ 0, for some x = (e, (u, v)) ∈ XN,P . We will
show that d (Gf (xn), Gf (x)) −→ 0. Remark that u and v are
sequences of sequences.

As d(xn, x) −→ 0, there exists n0 ∈ N such that
d(xn, x) < 10−(p+nmax (P)) (its p + nmax (P) first digits
are null). In particular, ∀n > n0, e

n = e, as the Hamming

distance between the integral parts of x and x̌ is 0. Similarly,
due to the nullity of the p+nmax (P) first digits of d(xn, x),
we can conclude that ∀n > n0, (vn)0 = v0, and that ∀n > n0,
(un)0 = u0, (un)1 = u1, ..., (un)v

0−1 = uv
0−1. This implies

that:
• Gf (xn)1 = Gf (x)1: they have the same Boolean vector

as first coordinate.
• dSN,P (Σ(un, vn); Σ(u, v)) =

10p+nmax (P)dSN,P ((un, vn); (u, v)). As the right
part of the equality tends to 0, we can deduce that it
is the case too for the left part of the equality, and so
Gf (xn)2 is convergent to Gf (x)2.

D. ΓP(f) as an extension of Γ(f)

Let P = {p1, p2, . . . , pp}. We define the directed graph
ΓP(f) as follows.
• Its vertices are the 2N elements of BN.

• Each vertex has
p∑
i=1

Npi arrows, namely all the

p1, p2, . . . , pp tuples having their elements in J1,NK.
• There is an arc labeled u0, . . . , upi−1, i ∈ J1, pK

between vertices x and y if and only if y =
Ff,pi(x, (u0, . . . , upi−1)).

It is not hard to see that the graph Γ{1}(f) is Γ(f).

00 01

10 11

2

1

2

1

(a) Γ(f0)

00

11,22

01

11,22

112,121

211,222

10

11,22

112,121

111122

212 221

11,22

11

211,222

111122

212 221

12

21

12

21

(b) Γ{2,3}(f0)

Figure 2: Iterating f0 : (x1, x2) 7→ (x1, x2)

Running Example. Consider for instance N = 2, Let
f0 : B2 −→ B2 be the negation function, i.e., f0(x1, x2) =
(x1, x2), and consider P = {2, 3}. The graphs of iterations
are given in FIGURE 2. The FIGURE 2A shows what happens
when displaying each iteration result. On the contrary, the
FIGURE 2B explicits the behaviors when always applying

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

either 2 or 3 modifications before generating results. Notice
that here, orientations of arcs are not necessary since the
function f0 is equal to its inverse f−1

0 .

E. Proofs of chaos

We will show that,

Proposition 3. ΓP(f) is strongly connected if and only if Gf
is topologically transitive on (XN,P , d).

Proof. Suppose that ΓP(f) is strongly connected. Let x =
(e, (u, v)), x̌ = (ě, (ǔ, v̌)) ∈ XN,P and ε > 0. We will find
a point y in the open ball B(x, ε) and n0 ∈ N such that
Gn0

f (y) = x̌: this strong transitivity will imply the transitivity
property. We can suppose that ε < 1 without loss of generality.

Let us denote by (E, (U, V)) the elements of y. As y must
be in B(x, ε) and ε < 1, E must be equal to e. Let k =
blog10(ε)c+ 1. dSN,P ((u, v), (U, V)) must be lower than ε, so
the k first digits of the fractional part of dSN,P ((u, v), (U, V))
are null. Let k1 the smallest integer such that, if V 0 = v0,
..., V k1 = vk1 , U0 = u0, ..., U

∑k1
l=0 V

l−1 = u
∑k1
l=0 v

l−1. Then
dSN,P ((u, v), (U, V)) < ε. In other words, any y of the form
(e, ((u0, ..., u

∑k1
l=0 v

l−1), (v0, ..., vk1)) is in B(x, ε).
Let y0 such a point and z = Gk1f (y0) = (e′, (u′, v′)).

ΓP(f) being strongly connected, there is a path between e′

and ě. Denote by a0, . . . , ak2 the edges visited by this path. We
denote by V k1 = |a0| (number of terms in the finite sequence
a1), V k1+1 = |a1|, ..., V k1+k2 = |ak2 |, and by Uk1 = a0

0,
Uk1+1 = a1

0, ..., Uk1+Vk1−1 = a
Vk1−1
0 , Uk1+Vk1 = a0

1,
Uk1+Vk1+1 = a1

1,...
Let y = (e, ((u0, . . . , u

∑k1
l=0 v

l−1, a0
0, . . . , a

|a0|
0 , a0

1, . . . ,

a
|a1|
1 , . . . , a0

k2
, . . . , a

|ak2 |
k2

, ǔ0, ǔ1, . . .), (v0, . . . , vk1 , |a0|, . . . ,
|ak2 |, v̌0, v̌1, . . .))). So y ∈ B(x, ε) and Gk1+k2

f (y) = x̌.
Conversely, if ΓP(f) is not strongly connected, then there

are 2 vertices e1 and e2 such that there is no path between
e1 and e2. That is, it is impossible to find (u, v) ∈ SN,P
and n ∈ N such that Gnf (e, (u, v))1 = e2. The open ball
B(e2, 1/2) cannot be reached from any neighborhood of e1,
and thus Gf is not transitive.

We show now that,

Proposition 4. If ΓP(f) is strongly connected, then Gf is
regular on (XN,P , d).

Proof. Let x = (e, (u, v)) ∈ XN,P and ε > 0. As in the proofs
of Prop. 3, let k1 ∈ N such that{

(e, ((u0, . . . , uv
k1−1

, U0, U1, . . .), (v0, . . . , vk1 , V 0, V 1, . . .)) |

∀i, j ∈ N, U i ∈ J1,NK, V j ∈ P
}
⊂ B(x, ε),

and y = Gk1f (e, (u, v)). ΓP(f) being strongly connected,
there is at least a path from the Boolean state y1 of y and e

⇒ Phrase pas claire : "from . . . " mais pas
de "to . . . "

⇐
. Denote by a0, . . . , ak2 the edges
of such a path. Then the point:
(e, ((u0, . . . , uv

k1−1

, a0
0, . . . , a

|a0|
0 , a0

1, . . . , a
|a1|
1 , . . . , a0

k2
, . . . ,

a
|ak2 |
k2

, u0, . . . , uv
k1−1

, a0
0, . . . , a

|ak2 |
k2

. . .),

(v0, . . . , vk1 , |a0|, . . . , |ak2 |, v0, . . . , vk1 , |a0|, . . . , |ak2 |, . . .))
is a periodic point in the neighborhood B(x, ε) of x.

Gf being topologically transitive and regular, we can thus
conclude that

Theorem 1. The function Gf is chaotic on (XN,P , d) if and
only if its iteration graph ΓP(f) is strongly connected.

Corollary 1. The pseudorandom number generator χ14Secrypt

is not chaotic on (XN,{b}, d) for the negation function.

Proof. In this context, P is the singleton {b}. If b is even, any
vertex e of Γ{b}(f0) cannot reach its neighborhood and thus
Γ{b}(f0) is not strongly connected. If b is odd, any vertex e of
Γ{b}(f0) cannot reach itself and thus Γ{b}(f0) is not strongly
connected.

The next section recalls a general scheme to produce
functions and a iteration number b such that Γ{b} is strongly
connected.

IV. FUNCTIONS WITH STRONGLY CONNECTED Γ{b}(f)

First of all, let f : BN → BN. It has been shown [9, The-
orem 4] that if its iteration graph Γ(f) is strongly connected,
then the output of χ14Secrypt follows a law that tends to the
uniform distribution if and only if its Markov matrix is a
doubly stochastic matrix.

In [11, Section 4], we have presented a general scheme
which generates function with strongly connected iteration
graph Γ(f) and with doubly stochastic Markov probability
matrix.

Basically, let us consider the N-cube. Let us next remove
one Hamiltonian cycle in this one. When an edge (x, y) is
removed, an edge (x, x) is added.

Running Example. For instance, the iteration graph Γ(f∗)
(given in Figure 1) is the 3-cube in which the Hamiltonian
cycle 000, 100, 101, 001, 011, 111, 110, 010, 000 has been re-
moved.

We first have proven the following result, which states that
the N-cube without one Hamiltonian cycle has the awaited
property with regard to the connectivity.

Theorem 2. The iteration graph Γ(f) issued from the N-cube
where an Hamiltonian cycle is removed is strongly connected.

Moreover, if all the transitions have the same probability
(1
n), we have proven the following results:

Theorem 3. The Markov Matrix M resulting from the N-
cube in which an Hamiltonian cycle is removed, is doubly
stochastic.

Let us consider now a N-cube where an Hamiltonian cycle is
removed. Let f be the corresponding function. The question
which remains to solve is: can we always find b such that
Γ{b}(f) is strongly connected?

The answer is indeed positive. We furthermore have the
following strongest result.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Theorem 4. There exist b ∈ N such that Γ{b}(f) is complete.

Proof. There is an arc (x, y) in the graph Γ{b}(f) if and only
if M b

xy is positive where M is the Markov matrix of Γ(f). It
has been shown in [9, Lemma 3] that M is regular. Thus, there
exists b such that there is an arc between any x and y.

This section ends with the idea of removing a Hamiltonian
cycle in the N-cube. In such a context, the Hamiltonian cycle
is equivalent to a Gray code. Many approaches have been pro-
posed a way to build such codes, for instance the Reflected Bi-
nary Code. In this one, one of the bits is switched exactly 2N−⇒ formule incomplète : 2N−1 ?? ⇐
for a N-length cycle.

The function that is built from the⇒ Phrase non terminée ⇐
The next section presents how to build balanced Hamilto-

nian cycles in the N-cube with the objective to embed them
into the pseudorandom number generator.

V. BALANCED HAMILTONIAN CYCLE

Many approaches have been developed to solve the problem
of building a Gray code in a N-cube [13], [14], [15], [16],
according to properties the produced code has to verify. For
instance, [14], [15] focus on balanced Gray codes. In the
transition sequence of these codes, the number of transitions
of each element must differ at most by 2. This uniformity is a
global property on the cycle, i.e. a property that is established
while traversing the whole cycle. On the opposite side, when
the objective is to follow a subpart of the Gray code and to
switch each element approximately the same amount of times,
local properties are wished. For instance, the locally balanced
property is studied in [16] and an algorithm that establishes
locally balanced Gray codes is given.

The current context is to provide a function f : BN → BN

by removing a Hamiltonian cycle in the N-cube. Such a func-
tion is going to be iterated b times to produce a pseudo random
number, i.e. a vertex in the N-cube. Obviously, the number of
iterations b has to be sufficiently large to provide a uniform
output distribution. To reduce the number of iterations, it can
be claimed that the provided Gray code should ideally possess
both balanced and locally balanced properties. However, none
of the two algorithms is compatible with the second one:
balanced Gray codes that are generated by state of the art
works [15], [14] are not locally balanced. Conversely, locally
balanced Gray codes yielded by Igor Bykov approach [16] are
not globally balanced. This section thus shows how the non
deterministic approach presented in [15] has been automatized
to provide balanced Hamiltonian paths such that, for each
subpart, the number of switches of each element is as uniform
as possible.

A. Analysis of the Robinson-Cohn extension algorithm

As far as we know three works, namely [13], [14], and [15]
have addressed the problem of providing an approach to
produce balanced gray code. The authors of [13] introduced
an inductive approach aiming at producing balanced Gray

codes, provided the user gives a special subsequence of the
transition sequence at each induction step. This work have
been strengthened in [14] where the authors have explicitly
shown how to construct such a subsequence. Finally the
authors of [15] have presented the Robinson-Cohn extension
algorithm. There rigorous presentation of this one have mainly
allowed them to prove two properties. The former states that
if N is a 2-power, a balanced Gray code is always totally
balanced. The latter states that for every N there exists a
Gray code such that all transition count numbers are 2-powers
whose exponents are either equal or differ from each other by
1. However, the authors do not prove that the approach allows
to build (totally balanced) Gray code. What follows shows that
this fact is established and first recalls the approach.

Let be given a N − 2-bit Gray code whose transition se-
quence is SN−2. What follows is the Robinson-Cohn extension
method [15] which produces a n-bits Gray code.

1) Let l be an even positive integer. Find u1, u2, . . . , ul−2, v
(maybe empty) subsequences of SN−2 such that SN−2

is the concatenation of

si1 , u0, si2 , u1, si3 , u2, . . . , sil−1, ul−2, sil , v

where i1 = 1, i2 = 2, and u0 = ∅ (the empty sequence).
2) Replace in SN−2 the sequences u0, u1, u2, . . . , ul−2 by

N − 1, u′(u1,N − 1,N), u′(u2,N,N − 1), u′(u3,N −
1,N), . . . , u′(ul−2,N,N − 1) respectively, where
u′(u, x, y) is the sequence u, x, uR, y, u such that uR

is u in reversed order. The obtained sequence is further
denoted as U .

3) Construct the sequences V = vR,N, v, W = N −
1, SN−2,N, and let W ′ be W where the first two
elements have been exchanged.

4) The transition sequence SN is thus the concatenation
UR, V,W ′.

It has been proven in [15] that SN is the transition sequence
of a cyclic N-bits Gray code if SN−2 is. However, the step (1)
is not a constructive step that precises how to select the sub-
sequences which ensures that yielded Gray code is balanced.
Next section shows how to choose the sequence l to have the
balance property.

B. Balanced Codes

Let us first recall how to formalize the balance property
of a Gray code. Let L = w1, w2, . . . , w2N be the sequence
of a N-bits cyclic Gray code. The transition sequence S =
s1, s2, . . . , s2n , si, 1 ≤ i ≤ 2N, indicates which bit position
changes between codewords at index i and i + 1 modulo
2N. The transition count function TCN : {1, . . . ,N} →
{0, . . . , 2N} gives the number of times i occurs in S, i.e.,
the number of times the bit i has been switched in L.

The Gray code is totally balanced if TCN is constant (and
equal to 2N

N). It is balanced if for any two bit indices i and j,
|TCN(i)− TCN(j)| ≤ 2.

Running Example. Let L∗ = 000, 100, 101, 001, 011, 111,
110, 010 be the Gray code that corresponds to the Hamiltonian
cycle that has been removed in f∗. Its transition sequence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

is S = 3, 1, 3, 2, 3, 1, 3, 2 and its transition count function is
TC3(1) = TC3(2) = 2 and TC3(3) = 4. Such a Gray code is
balanced.

Let now L4 = 0000, 0010, 0110, 1110, 1111, 0111, 0011,
0001, 0101, 0100, 1100, 1101, 1001, 1011, 1010, 1000
be a cyclic Gray code. Since S =
2, 3, 4, 1, 4, 3, 2, 3, 1, 4, 1, 3, 2, 1, 2, 4, TC4 is equal to 4
everywhere, this code is thus totally balanced.

On the contrary, for the standard 4-bits Gray code
Lst = 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100,
1101, 1111, 1110, 1010, 1011, 1001, 1000, we have TC4(1) =
8 TC4(2) = 4 TC4(3) = TC4(4) = 2 and the code is neither
balanced nor totally balanced.

Theorem 5. Let N in N∗, and aN be defined by aN = 2

⌊
2N

2N

⌋
.

There exists then a sequence l in step (1) of the Robinson-Cohn
extension algorithm such that all the transition counts TCN(i)
are aN or aN + 2 for any i, 1 ≤ i ≤ N.

The proof is done by induction on N. Let us immediately
verify that it is established for both odd and even smallest
values, i.e. 3 and 4. For the initial case where N = 3,
i.e. N− 2 = 1 we successively have: S1 = 1, 1, l = 2,
u0 = ∅, and v = ∅. Thus again the algorithm successively
produces U = 1, 2, 1, V = 3, W = 2, 1, 1, 3, and W ′ =
1, 2, 1, 3. Finally, S3 is 1, 2, 1, 3, 1, 2, 1, 3 which obviously
verifies the theorem. For the initial case where N = 4, i.e.
N− 2 = 2 we successively have: S1 = 1, 2, 1, 2, l = 4,
u0, u1, u2 = ∅, ∅, ∅, and v = ∅. Thus again the algorithm
successively produces U = 1, 3, 2, 3, 4, 1, 4, 3, 2, V = 4,
W = 3, 1, 2, 1, 2, 4, and W ′ = 1, 3, 2, 1, 2, 4. Finally, S4 is
2, 3, 4, 1, 4, 3, 2, 3, 1, 4, 1, 3, 2, 1, 2, 4 such that TC4(i) = 4 and
the theorem is established for odd and even initial values.

For the inductive case, let us first define some variables.
Let cN (resp. dN) be the number of elements whose transition
count is exactly aN (resp aN + 2). These two variables are
defined by the system

{
cN + dN = N
cNaN + dN(aN + 2) = 2N

⇔

 dN =
2N − N.aN

2
cN = N− dN

Since aN is even, dN is an integer. Let us first proove
that both cN and dN are positive integers. Let qN and rN,
respectively, be the quotient and the remainder in the Eu-
clidean disvision of 2N by 2N, i.e. 2N = qN.2N + rN, with
0 ≤ rN < 2N. First of all, the integer r is even since
rN = 2N − qN.2N = 2(2N−1 − qN.N). Next, aN is 2N−rN

N .
Consequently dN is rN/2 and is thus a positive integer s.t.
0 ≤ dN < N. The proof for cN is obvious.

For any i, 1 ≤ i ≤ N, let ziN (resp. tiN and biN) be the
occurence number of element i in the sequence u0, . . . , ul−2

(resp. in the sequences si1 , . . . , sil and v) in step (1) of the
algorithm.

Due to the definition of u′ in step (2), 3.ziN + tiN is the
number of element i in the sequence U . It is clear that the

number of element i in the sequence V is 2biN due to step
(3). We thus have the following system:{

3.ziN + tiN + 2.biN + TCN−2(i) = TCN(i)
ziN + tiN + biN = TCN−2(i)

⇔

{
ziN =

TCN(i)− 2.TCN−2(i)− biN
2

tiN = TCN−2(i)− ziN − biN
(3)

In this set of 2 equations with 3 unknown variables, let bi
be set with 0. In this case, since TCN is even (equal to aN or to
aN + 2), the variable ziN is thus an integer. Let us now prove
that the resulting system has always positive integer solutions
zi, ti, 0 ≤ zi, ti ≤ TCN−2(i) and s.t. their sum is equal to
TCN−2(i). This latter consraint is obviously established if the
system has a solution. We thus have the following system.

{
ziN =

TCN(i)− 2.TCN−2(i)

2
tiN = TCN−2(i)− ziN

(4)

The definition of TCN(i) depends on the value of N. When
3 ≤ N ≤ 7, values are defined as follows:

TC3 = [2, 2, 4]

TC5 = [6, 6, 8, 6, 6]

TC7 = [18, 18, 20, 18, 18, 18, 18]

TC4 = [4, 4, 4, 4]

TC6 = [10, 10, 10, 10, 12, 12]

It is not hard to verify that all these instanciations verify the
aformentioned contraints.

When N ≥ 8, TCN(i) is defined as follows:

TCN(i) =

{
aN if 1 ≤ i ≤ cN
aN + 2 if cN + 1 ≤ i ≤ cN + dN

(5)

We thus have

TCN(i)− 2.TCN−2(i) ≥ aN − 2(aN−2 + 2)

≥ 2N−rN
N − 2

(
2N−2−rN−2

N−2 + 2
)

≥ 2N−2N
N − 2

(
2N−2

N−2 + 2
)

≥ (N−2).2N−2N.2N−2−6N(N−2)
N.(N−2)

A simple variation study of the function t : R → R such
that x 7→ t(x) = (x−2).2x−2x.2x−2−6x(x−2) shows that
its derivative is strictly postive if x ≥ 6 and t(8) = 224. The
integer TCN(i) − 2.TCN−2(i) is thus positive for any N ≥ 8
and the proof is established.

For each element i, we are then left to choose ziN positions
among TCN(i), which leads to

(TCN(i)
ziN

)
possibilities. Notice

that all such choices lead to a hamiltonian path.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

VI. MIXING TIME

This section considers functions f : BN → BN issued from
an hypercube where an Hamiltonian path has been removed as
described in previous section. Notice that the iteration graph
is always a subgraph of N-cube augmented with all the self-
loop, i.e., all the edges (v, v) for any v ∈ BN. Next, if we
add probabilities on the transition graph, iterations can be
interpreted as Markov chains.

Running Example. Let us consider for instance the graph
Γ(f) defined in FIGURE 1. and the probability function p
defined on the set of edges as follows:

p(e)

{
= 2

3 if e = (v, v) with v ∈ B3,
= 1

6 otherwise.

The matrix P of the Markov chain associated to the function
f∗ and to its probability function p is

P =
1

6



4 1 1 0 0 0 0 0
1 4 0 0 0 1 0 0
0 0 4 1 0 0 1 0
0 1 1 4 0 0 0 0
1 0 0 0 4 0 1 0
0 0 0 0 1 4 0 1
0 0 0 0 1 0 4 1
0 0 0 1 0 1 0 4


.

A specific random walk in this modified hypercube is first
introduced (See section VI-A). We further study this random
walk in a theoretical way to provide an upper bound of fair
sequences (See section VI-B). We finally complete these study
with experimental results that reduce this bound (Sec. VI-C).
Notice that for a general references on Markov chains see [17],
and particularly Chapter 5 on stopping times.

A. Formalizing the Random Walk

First of all, let π, µ be two distributions on BN. The total
variation distance between π and µ is denoted ‖π−µ‖TV and
is defined by

‖π − µ‖TV = max
A⊂BN

|π(A)− µ(A)|.

It is known that

‖π − µ‖TV =
1

2

∑
X∈BN

|π(X)− µ(X)|.

Moreover, if ν is a distribution on BN, one has

‖π − µ‖TV ≤ ‖π − ν‖TV + ‖ν − µ‖TV

Let P be the matrix of a Markov chain on BN. P (X, ·) is
the distribution induced by the X-th row of P . If the Markov
chain induced by P has a stationary distribution π, then we
define

d(t) = max
X∈BN

‖P t(X, ·)− π‖TV.

⇒ incohérence de notation X : entier ou
dans BN ?

⇐
and

tmix(ε) = min{t | d(t) ≤ ε}.

Intutively speaking, tmix(ε) is the time/steps required to be
sure to be ε-close to the stationary distribution, wherever the
chain starts.

One can prove that

tmix(ε) ≤ dlog2(ε−1)etmix(
1

4
)

Let (Xt)t∈N be a sequence of BN valued random variables.
A N-valued random variable τ is a stopping time for the
sequence (Xi) if for each t there exists Bt ⊆ (BN)t+1

such that {τ = t} = {(X0, X1, . . . , Xt) ∈ Bt}. In other
words, the event {τ = t} only depends on the values of
(X0, X1, . . . , Xt), not on Xk with k > t.

Let (Xt)t∈N be a Markov chain and f(Xt−1, Zt) a random
mapping representation of the Markov chain. A randomized
stopping time for the Markov chain is a stopping time for
(Zt)t∈N. If the Markov chain is irreducible and has π as
stationary distribution, then a stationary time τ is a randomized
stopping time (possibly depending on the starting position X),
such that the distribution of Xτ is π:

PX(Xτ = Y) = π(Y).

B. Upper bound of Stopping Time

A stopping time τ is a strong stationary time if Xτ is
independent of τ . The following result will be useful [17,
Proposition 6.10],

Theorem 6. If τ is a strong stationary time, then d(t) ≤
maxX∈BN PX(τ > t).

Let E = {(X,Y) | X ∈ BN, Y ∈ BN, X = Y or X ⊕
Y ∈ 0∗10∗}. In other words, E is the set of all the edges
in the classical N-cube. Let h be a function from BN into
J1,NK. Intuitively speaking h aims at memorizing for each
node X ∈ BN which edge is removed in the Hamiltonian
cycle, i.e. which bit in J1,NK cannot be switched.

We denote by Eh the set E \ {(X,Y) | X ⊕ Y =
0N−h(X)10h(X)−1}. This is the set of the modified hypercube,
i.e., the N-cube where the Hamiltonian cycle h has been
removed.

We define the Markov matrix Ph for each line X and each
column Y as follows: Ph(X,X) = 1

2 + 1
2N

Ph(X,Y) = 0 if (X,Y) /∈ Eh
Ph(X,Y) = 1

2N if X 6= Y and (X,Y) ∈ Eh
(6)

We denote by h : BN → BN the function such that for any
X ∈ BN, (X,h(X)) ∈ E and X⊕h(X) = 0N−h(X)10h(X)−1.
The function h is said square-free if for every X ∈ BN,
h(h(X)) 6= X .

Lemma 1. If h is bijective and square-free, then
h(h
−1

(X)) 6= h(X).

Proof. Let h be bijective. Let k ∈ J1,NK s.t. h(h
−1

(X)) =

k. Then (h
−1

(X), X) belongs to E and h
−1

(X) ⊕ X =

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0N−k10k−1. Let us suppose h(X) = h(h
−1

(X)). In such
a case, h(X) = k. By definition of h, (X,h(X)) ∈ E
and X ⊕ h(X) = 0N−h(X)10h(X)−1 = 0N−k10k−1. Thus
h(X) = h

−1
(X), which leads to h(h(X)) = X . This

contradicts the square-freeness of h.

Let Z be a random variable that is uniformly distributed
over J1,NK×B. For X ∈ BN, we define, with Z = (i, b),{

f(X,Z) = X ⊕ (0N−i10i−1) if b = 1 and i 6= h(X),
f(X,Z) = X otherwise.

The Markov chain is thus defined as

Xt = f(Xt−1, Zt)

An integer ` ∈ J1,NK is said fair at time t if there exists
0 ≤ j < t such that Zj+1 = (`, ·) and h(Xj) 6= `. In other
words, there exist a date j before t where the first element
of the random variable Z is exactly l (i.e., l is the strategy at
date j) and where the configuration Xj allows to traverse the
edge l.

Let τstop be the first time all the elements of J1,NK are
fair. The integer τstop is a randomized stopping time for the
Markov chain (Xt).

Lemma 2. The integer τstop is a strong stationary time.

Proof. Let τ` be the first time that ` is fair. The random vari-
able Zτ` is of the form (`, b) such that b = 1 with probability
1
2 and b = 0 with probability 1

2 . Since h(Xτ`−1) 6= ` the value
of the `-th bit of Xτ` is 0 or 1 with the same probability (1

2).
This probability is independent of the value of the other bits.

Moving next in the chain, at each step, the l-th bit is
switched from 0 to 1 or from 1 to 0 each time with the same
probability. Therefore, for t ≥ τ`, the `-th bit of Xt is 0 or 1
with the same probability, and independently of the value of
the other bits, proving the lemma.

Theorem 7. If h is bijective and square-free, then E[τstop] ≤
8N2 + 4N ln(N + 1).

For each X ∈ BN and ` ∈ J1,NK, let SX,` be the random
variable that counts the number of steps from X until we reach
a configuration where ` is fair. More formally

SX,` = min{t ≥ 1 | h(Xt−1) 6= ` and Zt = (`, .)
and X0 = X}.

Lemma 3. Let h is a square-free bijective function. Then for
all X and all `, the inequality E[SX,`] ≤ 8N2 is established.

Proof. For every X , every `, one has P(SX,`) ≤ 2) ≥ 1
4N2 .

Let X0 = X . Indeed,
• if h(X) 6= `, then P(SX,` = 1) = 1

2N ≥
1

4N2 .
• otherwise, h(X) = `, then P(SX,` = 1) = 0. But in

this case, intuitively, it is possible to move from X to
h
−1

(X) (with probability 1
2N). And in h

−1
(X) the l-th

bit can be switched. More formally, since h is square-
free, h(X) = h(h(h

−1
(X))) 6= h

−1
(X). It follows that

(X,h
−1

(X)) ∈ Eh. We thus have P (X1 = h
−1

(X)) =
1

2N . Now, by Lemma 1, h(h
−1

(X)) 6= h(X). Therefore

P(Sx,` = 2 | X1 = h
−1

(X)) = 1
2N , proving that

P(Sx,` ≤ 2) ≥ 1
4N2 .

Therefore, P(SX,` ≥ 3) ≤ 1− 1
4N2 . By induction, one has,

for every i, P(SX,` ≥ 2i) ≤
(
1− 1

4N2

)i
. Moreover, since SX,`

is positive, it is known [18, lemma 2.9], that

E[SX,`] =

+∞∑
i=1

P(SX,` ≥ i).

Since P(SX,` ≥ i) ≥ P(SX,` ≥ i+ 1), one has

E[SX,`] =
∑+∞
i=1 P(SX,` ≥ i)

≤ P(SX,` ≥ 1) + P(SX,` ≥ 2)

+2
∑+∞
i=1 P(SX,` ≥ 2i).

Consequently,

E[SX,`] ≤ 1+1+2

+∞∑
i=1

(
1− 1

4N2

)i
= 2+2(4N2−1) = 8N2,

which concludes the proof.

Let τ ′stop be the time used to get all the bits but one fair.

Lemma 4. One has E[τ ′stop] ≤ 4N ln(N + 1).

Proof. This is a classical Coupon Collector’s like problem.
Let Wi be the random variable counting the number of moves
done in the Markov chain while we had exactly i−1 fair bits.
One has τ ′stop =

∑N−1
i=1 Wi. But when we are at position X

with i− 1 fair bits, the probability of obtaining a new fair bit
is either 1 − i−1

N if h(X) is fair, or 1 − i−2
N if h(X) is not

fair.
Therefore, P(Wi = k) ≤

(
i−1
N

)k−1 N−i+2
N . Consequently,

we have P(Wi ≥ k) ≤
(
i−1
N

)k−1 N−i+2
N−i+1 . It follows that

E[Wi] =
∑+∞
k=1 P(Wi ≥ k) ≤ N N−i+2

(N−i+1)2 ≤
4N

N−i+2 .
It follows that E[Wi] ≤ 4N

N−i+2 . Therefore

E[τ ′stop] =

N−1∑
i=1

E[Wi] ≤ 4N
N−1∑
i=1

1

N− i+ 2
= 4N

N+1∑
i=3

1

i
.

But
∑N+1
i=1

1
i ≤ 1 + ln(N + 1). It follows that 1 + 1

2 +∑N+1
i=3

1
i ≤ 1+ln(N+1). Consequently, E[τ ′stop] ≤ 4N(− 1

2 +
ln(N + 1)) ≤ 4N ln(N + 1).

One can now prove Theorem 7.

Proof. Since τ ′stop is the time used to obtain N−1 fair bits. As-
sume that the last unfair bit is `. One has τstop = τ ′stop+SXτ ,`,
and therefore E[τstop] = E[τ ′stop] + E[SXτ ,`]. Therefore,
Theorem 7 is a direct application of lemma 3 and 4.

Now using Markov Inequality, one has PX(τ > t) ≤ E[τ]
t .

With tn = 32N2+16N ln(N+1), one obtains: PX(τ > tn) ≤
1
4 . Therefore, using the defintion of tmix) and Theorem 6, it
follows that tmix ≤ 32N2 + 16N ln(N + 1) = O(N2).

Notice that the calculus of the stationary time upper bound
is obtained under the following constraint: for each vertex in
the N-cube there are one ongoing arc and one outgoing arc
that are removed. The calculus doesn’t consider (balanced)
Hamiltonian cycles, which are more regular and more binding
than this constraint. Moreover, the bound is obtained using the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

coarse Markov Inequality. For the classical (lazzy) random
walk the N-cube, without removing any Hamiltonian cylce,
the mixing time is in Θ(N lnN). We conjecture that in our
context, the mixing time is also in Θ(N lnN).

In this later context, we claim that the upper bound for the
stopping time should be reduced. This fact is studied in the
next section.

C. Practical Evaluation of Stopping Times

Let be given a function f : BN → BN and an initial seed
x0. The pseudo code given in algorithm 2 returns the smallest
number of iterations such that all elements ` ∈ J1,NK are fair.
It allows to deduce an approximation of E[τstop] by calling
this code many times with many instances of function and
many seeds.

Input: a function f , an initial configuration x0 (N bits)
Output: a number of iterations nbit
nbit← 0;
x← x0;
fair← ∅;
while |fair| < N do

s← Random(N) ;
image← f(x);
if Random(1) 6= 0 and x[s] 6= image[s] then

fair← fair ∪ {s};
x[s]← image[s];

end
nbit← nbit + 1;

end
return nbit;

Algorithm 2: Pseudo Code of stoping time calculus

Practically speaking, for each number N, 3 ≤ N ≤ 16, 10
functions have been generated according to method presented
in section V. For each of them, the calculus of the approxima-
tion of E[τstop] is executed 10000 times with a random seed.
The Figure 3 summarizes these results. In this one, a circle
represents the approximation of E[τstop] for a given N. The
line is the graph of the function x 7→ 2x ln(2x + 8). It can
firstly be observed that the approximation is largely smaller
than the upper bound given in theorem 7. It can be further
deduced that the conjecture of the previous section is realistic
according the graph of x 7→ 2x ln(2x+ 8).

VII. EXPERIMENTS

Let us finally present the pseudorandom number generator
χ16HamG, which is based on random walks in Γ{b}(f). More
precisely, let be given a Boolean map f : BN → BN, a PRNG
Random, an integer b that corresponds to an iteration number
(i.e., the length of the walk), and an initial configuration x0.
Starting from x0, the algorithm repeats b times a random
choice of which edge to follow, and traverses this edge
provided it is allowed to do so, i.e., when Random(1) is not
null. The final configuration is thus outputted. This PRNG is
formalized in Algorithm 3.

4 6 8 10 12 14 16
20

40

60

80

100

120

experimental evaluation
2xln(2x+8)

Figure 3: Average Stopping Time Approximation

Input: a function f , an iteration number b, an initial
configuration x0 (N bits)

Output: a configuration x (N bits)
x← x0;
for i = 0, . . . , b− 1 do

if Random(1) 6= 0 then
s0 ← Random(N);
x← Ff (x, s0);

end
end
return x;

Algorithm 3: Pseudo Code of the χ16HamG PRNG

This PRNG is slightly different from χ14Secrypt recalled in
Algorithm 1. As this latter, the length of the random walk of
our algorithm is always constant (and is equal to b). However,
in the current version, we add the constraint that the probability
to execute the function Ff is equal to 0.5 since the output of
Random(1) is uniform in {0, 1}. This constraint is added to
match the theoretical framework of Sect. VI.

Notice that the chaos property of Gf given in Sect.III only
requires that the graph Γ{b}(f) is strongly connected. Since
the χ16HamG algorithm only adds probability constraints on
existing edges, it preserves this property.

For each number N = 4, 5, 6, 7, 8 of bits, we have generated
the functions according to the method given in Sect. IV and V.
For each N, we have then restricted this evaluation to the
function whose Markov Matrix (issued from Eq. (6)) has
the smallest practical mixing time. Such functions are given
in Table I. In this table, let us consider for instance the
function a© from B4 to B4 defined by the following images :
[13, 10, 9, 14, 3, 11, 1, 12, 15, 4, 7, 5, 2, 6, 0, 8]. In other words,
the image of 3 (0011) by a© is 14 (1110): it is obtained
as the binary value of the fourth element in the second list
(namely 14).

In this table the column that is labeled with b gives the
practical mixing time where the deviation to the standard
distribution is lesser than 10−6.

Let us first discuss about results against the NIST test suite.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Function f f(x), for x in (0, 1, 2, . . . , 2n − 1) N b
a© [13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8] 4 64
b© [29, 22, 25, 30, 19, 27, 24, 16, 21, 6, 5, 28, 23, 26, 1, 17, 5 78

31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 7, 20, 11, 18, 0, 4]
[55, 60, 45, 44, 58, 62, 61, 48, 53, 50, 52, 36, 59, 34, 33, 49,
15, 42, 47, 46, 35, 10, 57, 56, 7, 54, 39, 37, 51, 2, 1, 40, 63,

c© 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 6 88
12, 29, 8, 43, 14, 41, 0, 5, 38, 4, 6, 11, 3, 9, 32]

[111, 124, 93, 120, 122, 90, 113, 88, 115, 126, 125, 84, 123, 98,
112, 96, 109, 106, 77, 110, 99, 74, 104, 72, 71, 100, 117, 116,
103, 102, 65, 97, 31, 86, 95, 28, 27, 91, 121, 92, 119, 118, 69,
68, 87, 114, 89, 81, 15, 76, 79, 108, 107, 10, 105, 8, 7, 6, 101,

d© 70, 75, 82, 64, 0, 127, 54, 53, 62, 51, 59, 56, 60, 39, 52, 37,
36, 55, 58, 57, 49, 63, 44, 47, 40, 42, 46, 45, 41, 35, 34, 33,
38, 43, 50, 32, 48, 29, 94, 61, 24, 26, 18, 17, 25, 19, 30, 85,
22, 83, 2, 16, 80, 13, 78, 9, 14, 3, 11, 73, 12, 23, 4, 21, 20,

67, 66, 5, 1]
[223, 238, 249, 254, 243, 251, 233, 252, 183, 244, 229, 245, 227,
246, 240, 176, 175, 174, 253, 204, 203, 170, 169, 248, 247, 226,
228, 164, 163, 162, 161, 192, 215, 220, 205, 216, 155, 222, 221,
208, 213, 150, 212, 214, 219, 211, 145, 209, 239, 202, 207, 140,
195, 234, 193, 136, 231, 230, 199, 197, 131, 198, 225, 200, 63,
188, 173, 184, 186, 250, 57, 168, 191, 178, 180, 52, 187, 242,

241, 48, 143, 46, 237, 236, 235, 138, 185, 232, 135, 38, 181, 165,
35, 166, 33, 224, 31, 30, 153, 158, 147, 218, 217, 156, 159, 148,

e© 151, 149, 19, 210, 144, 152, 141, 206, 13, 12, 171, 10, 201, 128, 8 109
133, 130, 132, 196, 3, 194, 137, 0, 255, 124, 109, 120, 122, 106,
125, 104, 103, 114, 116, 118, 123, 98, 97, 113, 79, 126, 111, 110,
99, 74, 121, 72, 71, 70, 117, 101, 115, 102, 65, 112, 127, 90, 89,

94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93,
108, 107, 78, 105, 64, 69, 66, 68, 100, 75, 67, 73, 96, 55, 190,
189, 62, 51, 59, 41, 60, 119, 182, 37, 53, 179, 54, 177, 32, 45,
44, 61, 172, 11, 58, 9, 56, 167, 34, 36, 4, 43, 50, 49, 160, 23,

28, 157, 24, 26, 154, 29, 16, 21, 18, 20, 22, 27, 146, 25, 17, 47,
142, 15, 14, 139, 42, 1, 40, 39, 134, 7, 5, 2, 6, 129, 8]

Table I: Functions with DSCC Matrix and smallest MT

In our experiments, 100 sequences (s = 100) of 1,000,000
bits are generated and tested. If the value PT of any test is
smaller than 0.0001, the sequences are considered to be not
good enough and the generator is unsuitable. Table II shows
PT of sequences based on discrete chaotic iterations using
different schemes. If there are at least two statistical values
in a test, this test is marked with an asterisk and the average
value is computed to characterize the statistics. We can see in
Table II that all the rates are greater than 97/100, i.e., all the
generators achieve to pass the NIST battery of tests.

VIII. CONCLUSION

This work has assumed a Boolean map f which is embed-
ded into a discrete-time dynamical system Gf . This one is
supposed to be iterated a fixed number p1 or p2,. . . , or p of
times before its output is considered. This work has first shown
that iterations of Gf are chaotic if and only if its iteration
graph ΓP(f) is strongly connected where P is {p1, . . . , p}.
Any PRNG, which iterates Gf as above satisfies in some cases
the property of chaos.

We then have shown that a previously presented approach
can be directly applied here to generate function f with
strongly connected ΓP(f). The iterated map inside the gener-
ator is built by first removing from a N-cube an Hamiltonian
path and next by adding a self loop to each vertex. The PRNG
can thus be seen as a random walk of length in P into this new
N-cube. We furthermore have exhibited a bound on the number
of iterations that is sufficient to obtain a uniform distribution
of the output. Finally, experiments through the NIST battery
have shown that the statistical properties are almost established
for N = 4, 5, 6, 7, 8.

In future work, we intend to understand the link between
statistical tests and the properties of chaos for the associated
iterations. By doing so, relations between desired statisti-
cally unbiased behaviors and topological properties will be
understood, leading to better choices in iteration functions.
Conditions allowing the reduction of the stopping-time will be
investigated too, while other modifications of the hypercube
will be regarded in order to enlarge the set of known chaotic
and random iterations.

REFERENCES

[1] T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number
generators. part ii: practical realization,” Circuits and Systems I: Funda-
mental Theory and Applications, IEEE Transactions on, vol. 48, no. 3,
pp. 382–385, Mar 2001.

[2] T. Stojanovski and L. Kocarev, “Chaos-based random number
generators-part i: analysis [cryptography],” Circuits and Systems I:
Fundamental Theory and Applications, IEEE Transactions on, vol. 48,
no. 3, pp. 281–288, Mar 2001.

[3] L. Cao, L. Min, and H. Zang, “A chaos-based pseudorandom number
generator and performance analysis,” in Computational Intelligence and
Security, 2009. CIS ’09. International Conference on, vol. 1. IEEE,
Dec 2009, pp. 494–498.

[4] G. Marsaglia, “Diehard: a battery of tests of randomness,”
http://stat.fsu.edu/ geo/diehard.html, 1996.

[5] E. Barker and A. Roginsky, “Draft NIST special publication 800-131
recommendation for the transitioning of cryptographic algorithms and
key sizes,” 2010.

[6] P. L’Ecuyer and R. J. Simard, “TestU01: A C library for empirical testing
of random number generators,” ACM Trans. Math. Softw, vol. 33, no. 4,
2007. [Online]. Available: http://doi.acm.org/10.1145/1268776.1268777

[7] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed.
Redwood City, CA: Addison-Wesley, 1989.

[8] C. Guyeux, Q. Wang, and J. Bahi, “Improving random number gen-
erators by chaotic iterations application in data hiding,” in Computer
Application and System Modeling (ICCASM), 2010 International Con-
ference on, vol. 13. IEEE, Oct 2010, pp. V13–643–V13–647.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Method a© b© c© d© e©

Frequency (Monobit) 0.851 (0.98) 0.719 (0.99) 0.699 (0.99) 0.514 (1.0) 0.798 (0.99)

Frequency (Monobit) 0.851 (0.98) 0.719 (0.99) 0.699 (0.99) 0.514 (1.0) 0.798 (0.99)

Frequency within a Block 0.262 (0.98) 0.699 (0.98) 0.867 (0.99) 0.145 (1.0) 0.455 (0.99)

Cumulative Sums (Cusum) * 0.301 (0.98) 0.521 (0.99) 0.688 (0.99) 0.888 (1.0) 0.598 (1.0)

Runs 0.224 (0.97) 0.383 (0.97) 0.108 (0.96) 0.213 (0.99) 0.616 (0.99)

Longest Run of 1s 0.383 (1.0) 0.474 (1.0) 0.983 (0.99) 0.699 (0.98) 0.897 (0.96)

Binary Matrix Rank 0.213 (1.0) 0.867 (0.99) 0.494 (0.98) 0.162 (0.99) 0.924 (0.99)

Disc. Fourier Transf. (Spect.) 0.474 (1.0) 0.739 (0.99) 0.012 (1.0) 0.678 (0.98) 0.437 (0.99)

Unoverlapping Templ. Match.* 0.505 (0.990) 0.521 (0.990) 0.510 (0.989) 0.511 (0.990) 0.499 (0.990)

Overlapping Temp. Match. 0.574 (0.98) 0.304 (0.99) 0.437 (0.97) 0.759 (0.98) 0.275 (0.99)

Maurer’s Universal Statistical 0.759 (0.96) 0.699 (0.97) 0.191 (0.98) 0.699 (1.0) 0.798 (0.97)

Approximate Entropy (m=10) 0.759 (0.99) 0.162 (0.99) 0.867 (0.99) 0.534 (1.0) 0.616 (0.99)

Random Excursions * 0.666 (0.994) 0.410 (0.962) 0.287 (0.998) 0.365 (0.994) 0.480 (0.985)

Random Excursions Variant * 0.337 (0.988) 0.519 (0.984) 0.549 (0.994) 0.225 (0.995) 0.533 (0.993)

Serial* (m=10) 0.630 (0.99) 0.529 (0.99) 0.460 (0.99) 0.302 (0.995) 0.360 (0.985)

Linear Complexity 0.719 (1.0) 0.739 (0.99) 0.759 (0.98) 0.122 (0.97) 0.514 (0.99)

Table II: NIST SP 800-22 test results (PT)

[9] J. Bahi, J.-F. Couchot, C. Guyeux, and A. Richard, “On the
link between strongly connected iteration graphs and chaotic
boolean discrete-time dynamical systems,” in FCT’11, 18th Int.
Symp. on Fundamentals of Computation Theory, ser. LNCS, vol.
6914, Oslo, Norway, Aug. 2011, pp. 126–137. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22953-4_11

[10] Q. Wang, J. Bahi, C. Guyeux, and X. Fang, “Randomness quality of CI
chaotic generators. application to internet security,” in INTERNET’2010.
The 2nd Int. Conf. on Evolving Internet. Valencia, Spain: IEEE
Computer Society Press, Sep. 2010, pp. 125–130, best Paper
award. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/
INTERNET.2010.30

[11] J. Couchot, P. Héam, C. Guyeux, Q. Wang, and J. M. Bahi, “Pseu-
dorandom number generators with balanced gray codes,” in SECRYPT
2014 - Proceedings of the 11th International Conference on Security
and Cryptography, Vienna, Austria, 28-30 August, 2014, M. S. Obaidat,
A. Holzinger, and P. Samarati, Eds. SciTePress, 2014, pp. 469–475.

[12] J. Banks, J. Brooks, G. Cairns, and P. Stacey, “On Devaney’s definition
of chaos,” Amer. Math. Monthly, vol. 99, pp. 332–334, 1992.

[13] J. P. Robinson and M. Cohn, “Counting sequences,” IEEE Trans.
Comput., vol. 30, no. 1, pp. 17–23, Jan. 1981. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1963620.1963622

[14] G. S. Bhat and C. D. Savage, “Balanced gray codes,” Electr. J. Comb.,
vol. 3, no. 1, 1996. [Online]. Available: http://www.combinatorics.org/
Volume_3/Abstracts/v3i1r25.html

[15] I. Suparta and A. v. Zanten, “Totally balanced and exponentially bal-
anced gray codes,” Discrete Analysis and Operation Research (Russia),
vol. 11, no. 4, pp. 81–98, 2004.

[16] I. S. Bykov, “On locally balanced gray codes,” Journal of Applied
and Industrial Mathematics, vol. 10, no. 1, pp. 78–85, 2016. [Online].
Available: http://dx.doi.org/10.1134/S1990478916010099

[17] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing
times. American Mathematical Society, 2006. [Online]. Available:
http://scholar.google.com/scholar.bib?q=info:3wf9IU94tyMJ:scholar.
google.com/&output=citation&hl=en&as_sdt=2000&ct=citation&cd=0

[18] M. Mitzenmacher and E. Upfal, Probability and Computing. Cambridge
University Press, 2005.

