
January 17, 2017 10:22 main

Random Walk in a N-cube Without Hamiltonian Cycle to Chaotic
Pseudorandom Number Generation: Theoretical and Practical

Considerations

Sylvain Contassot-Vivier
LORIA, Université de Lorraine, Nancy, France

sylvain.contassotvivier@loria.fr

Jean-François Couchot
FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté (UBFC), France

jean-francois.couchot@univ-fcomte.fr

Christophe Guyeux
FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté (UBFC), France

christophe.guyeux@univ-fcomte.fr

Pierre-Cyrille Heam
FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté (UBFC), France

pierre-cyrille.heam@univ-fcomte.fr

Designing a pseudorandom number generator (PRNG) is a di�cult and complex task. Many
recent works have considered chaotic functions as the basis of built PRNGs: the quality of
the output would indeed be an obvious consequence of some chaos properties. However, there
is no direct reasoning that goes from chaotic functions to uniform distribution of the output.
Moreover, embedding such kind of functions into a PRNG does not necessarily allow to get a
chaotic output, which could be required for simulating some chaotic behaviors.
In a previous work, some of the authors have proposed the idea of walking into a N-cube where
a balanced Hamiltonian cycle has been removed as the basis of a chaotic PRNG. In this article,
all the di�cult issues observed in the previous work have been tackled. The chaotic behavior of
the whole PRNG is proven. The construction of the balanced Hamiltonian cycle is theoretically
and practically solved. An upper bound of the expected length of the walk to obtain a uniform
distribution is calculated. Finally practical experiments show that the generators successfully
pass the classical statistical tests.

Keywords: Pseudorandom Numbers Generator, Chaotic iterations, Random Walk

1. Introduction

The exploitation of chaotic systems to generate pseudorandom sequences is a very topical issue [Stojanovski
et al., 2001; Stojanovski & Kocarev, 2001; Cao et al., 2009]. Such systems are fundamentally chosen because
of their unpredictable character and their sensitiveness to initial conditions. In most cases, these generators
simply consist in iterating a chaotic function like the logistic map [Stojanovski et al., 2001; Stojanovski &
Kocarev, 2001] or the Arnold's one [Cao et al., 2009]. . . Optimal parameters of such functions remain to be
found so that attractors are avoided,e.g.. By following this procedure, generated numbers will hopefully fol-
low a uniform distribution. In order to check the quality of the produced outputs, PRNGs (Pseudo-Random

1

January 17, 2017 10:22 main

2

Number Generators) are usually tested with statistical batteries like the so-called DieHARD [Marsaglia,
1996], NIST [Bassham et al., 2010], or TestU01 [L'Ecuyer & Simard, 2007] ones.

In its general understanding, the notion of chaos is often reduced to the strong sensitiveness to the
initial conditions (the well known �butter�y e�ect�): a continuous function k de�ned on a metrical space
is said to be strongly sensitive to the initial conditions if for each point x and each positive value ε, it is
possible to �nd another point y as close as possible to x, and an integer t such that the distance between
the t-th iterates of x and y, denoted by kt(x) and kt(y), is larger than ε. However, in his de�nition of
chaos, Devaney [Devaney, 1989] imposes to the chaotic function two other properties called transitivity and
regularity. The functions mentioned above have been studied according to these properties, and they have
been proven as chaotic on R. But nothing guarantees that such properties are preserved when iterating the
functions on �oating point numbers, which is the domain of interpretation of real numbers R on machines.

To avoid this lack of chaos, we have previously presented some PRNGs that iterate continuous functions
Gf on a discrete domain {1, . . . , n}N × {0, 1}n, where f is a Boolean function (i.e., f : {0, 1}N → {0, 1}N).
These generators are CIPRNG1

f (u) [Guyeux et al., 2010; Bahi et al., 2011a], CIPRNG2
f (u, v) [Wang et al.,

2010], and χ14Secrypt [Couchot et al., 2014] where CI stands for Chaotic Iterations. We have �rstly proven
in [Bahi et al., 2011a] that, to establish the chaotic nature of CIPRNG1

f algorithm, it is necessary and
su�cient that the asynchronous iterations are strongly connected. We then have proven that it is necessary
and su�cient that the Markov matrix associated to this graph is doubly stochastic, in order to have a
uniform distribution of the outputs. We have �nally established su�cient conditions to guarantee the �rst
property of connectivity. Among the generated functions, we thus have considered for further investigations
only the ones that satisfy the second property as well.

However, it cannot be directly deduced that χ14Secrypt is chaotic since we do not output all the successive
values of iterating Gf . This algorithm only displays a subsequence xb.n of a whole chaotic sequence xn and
it is indeed incorrect to say that the chaos property is preserved for any subsequence of a chaotic sequence.
This article presents conditions to preserve this property.

Finding a Boolean function which provides a strongly connected iteration graph having a doubly
stochastic Markov matrix is however not an easy task. We have �rstly proposed in [Bahi et al., 2011a]
a generate-and-test based approach that solved this issue. However, this one was not e�cient enough.
Thus, a second scheme has been further presented in [Couchot et al., 2014] by remarking that a N-cube
where an Hamiltonian cycle (or equivalently a Gray code) has been removed is strongly connected and has
a doubly stochastic Markov matrix.

However, the removed Hamiltonian cycle has a great in�uence in the quality of the output. For instance,
if this one is not balanced (i.e., the number of changes in di�erent bits are completely di�erent), some bits
would be hard to switch. This article shows an e�ective algorithm that e�ciently implements the previous
scheme and thus provides functions issued from removing, in the N-cube, a balanced Hamiltonian cycle.

The length b of the walk to reach a distribution close to the uniform one would be dramatically long.
This article theoretically and practically studies the length b until the corresponding Markov chain is close
to the uniform distribution. Finally, the ability of the approach to face classical tests suite is evaluated.

This article, which is an extension of [Couchot et al., 2014], is organized as follows. The next section
is devoted to preliminaries, basic notations, and terminologies regarding Boolean map iterations. Then, in
Section 3, Devaney's de�nition of chaos is recalled while the proof of chaos of our most general PRNGs
is provided. This is the �rst major contribution. Section 4 recalls a general scheme to obtain functions
with an expected behavior. Main theorems are recalled to make the article self-su�cient. The next section
(Sect. 5) presents an algorithm that implements this scheme and proves that it always produces a solution.
This is the second major contribution. Then, Section 6 de�nes the theoretical framework to study the
mixing-time, i.e., the su�cient amont of time until reaching an uniform distribution. It proves that this one
is in the worst case quadratic in the number of elements. Experiments show that the bound is in practice
signi�cantly lower. This is the third major contribution. Section 7 gives practical results on evaluating the
PRNG against the NIST suite. This research work ends with a conclusion section, where the contribution
is summarized and intended future work is outlined.

January 17, 2017 10:22 main

3

2. Preliminaries

In what follows, we consider the Boolean algebra on the set B = {0, 1} with the classical operators of
conjunction '.', of disjunction '+', of negation ' ', and of disjunctive union ⊕.

Let us �rst introduce basic notations. Let N be a positive integer. The set {1, 2, . . . ,N} of integers
belonging between 1 and N is further denoted as J1,NK. A Boolean map f is a function from BN to itself
such that x = (x1, . . . , xN) maps to f(x) = (f1(x), . . . , fN(x)). In what follows, for any �nite set X, |X|
denotes its cardinality and byc is the largest integer lower than y.

Functions are iterated as follows. At the tth iteration, only the st−th component is said to be �iterated�,
where s = (st)t∈N is a sequence of indices taken in J1;NK called �strategy�. Formally, let Ff : BN× J1;NK to
BN be de�ned by

Ff (x, i) = (x1, . . . , xi−1, fi(x), xi+1, . . . , xN).

Then, let x0 ∈ BN be an initial con�guration and s ∈ J1;NKN be a strategy, the dynamics are described by
the recurrence

xt+1 = Ff (xt, st). (1)

Let be given a Boolean map f . Its associated iteration graph Γ(f) is the directed graph such that the
set of vertices is BN, and for all x ∈ BN and i ∈ J1;NK, the graph Γ(f) contains an arc from x to Ff (x, i).
Each arc (x, Ff (x, i)) is labelled with i.

Running Example. Let us consider for instance N = 3. Let f∗ : B3 → B3 be de�ned by
f∗(x1, x2, x3) = (x2 ⊕ x3, x1x3 + x1x2, x1x3 + x1x2). The iteration graph Γ(f∗) of this function is given in
Figure 1.

000

001

010

101

011

110100

111

Figure 1. Iteration Graph Γ(f∗) of the function f∗

Let us �nally recall the pseudorandom number generator χ14Secrypt [Couchot et al., 2014] formalized in
Algorithm 1. It is based on random walks in Γ(f). More precisely, let be given a Boolean map f : BN → BN,
an input PRNG Random, an integer b that corresponds to a number of iterations, and an initial con�guration
x0. Starting from x0, the algorithm repeats b times a random choice of which edge to follow and traverses
this edge. The �nal con�guration is thus outputted.

Based on this setup, we can study the chaos properties of these functions. This is the aim of the next
section.

January 17, 2017 10:22 main

4

Input: a function f , an iteration number b, an initial con�guration x0 (N bits)
Output: a con�guration x (N bits)
x← x0;
for i = 0, . . . , b− 1 do

s← Random(N);
x← Ff (x, s);

end

return x;

Algorithm 1: Pseudo Code of the χ14Secrypt PRNG

3. Proof of Chaos

3.1. Motivations

Let us us �rst recall the chaos theoretical context presented in [Bahi et al., 2011a]. In this article, the space
of interest is BN × J1;NKN and the iteration function Hf is the map from BN × J1;NKN to itself de�ned by

Hf (x, s) = (Ff (x, s0), σ(s)).

In this de�nition, σ : J1;NKN −→ J1;NKN is a shift operation on sequences (i.e., a function that removes the
�rst element of the sequence) formally de�ned with

σ((uk)k∈N) = (uk+1)k∈N.

We have proven [Bahi et al., 2011a, Theorem 1] that Hf is chaotic in BN × J1;NKN if and only if Γ(f)
is strongly connected. However, the corollary which would say that χ14Secrypt is chaotic cannot be directly
deduced since we do not output all the successive values of iterating Ff . Only a few of them are concerned
and any subsequence of a chaotic sequence is not necessarily a chaotic sequence as well. This necessitates a
rigorous proof, which is the aim of this section. Let us �rstly recall the theoretical framework in which this
research takes place.

3.2. Devaney's Chaotic Dynamical Systems

Consider a topological space (X , τ) and a continuous function f : X → X [Devaney, 1989].

De�nition 3.1. The function f is said to be topologically transitive if, for any pair of open sets U, V ⊂ X ,
there exists k > 0 such that fk(U) ∩ V 6= ∅.

De�nition 3.2. An element x is a periodic point for f of period n ∈ N∗ if fn(x) = x.

De�nition 3.3. f is said to be regular on (X , τ) if the set of periodic points for f is dense in X : for any
point x in X , any neighborhood of x contains at least one periodic point (without necessarily the same
period).

De�nition 3.4 [Devaney's formulation of chaos [Devaney, 1989]]. The function f is said to be chaotic on
(X , τ) if f is regular and topologically transitive.

The chaos property is strongly linked to the notion of �sensitivity�, de�ned on a metric space (X , d) by:

De�nition 3.5. The function f has sensitive dependence on initial conditions if there exists δ > 0 such that,
for any x ∈ X and any neighborhood V of x, there exist y ∈ V and n > 0 such that d (fn(x), fn(y)) > δ.

The constant δ is called the constant of sensitivity of f .

Indeed, Banks et al. have proven in [Banks et al., 1992] that when f is chaotic and (X , d) is a metric
space, then f has the property of sensitive dependence on initial conditions (this property was formerly an
element of the de�nition of chaos).

3.3. A Metric Space for PRNG Iterations

Let us �rst introduce P ⊂ N a �nite nonempty set having the cardinality p ∈ N∗. Intuitively, this is the set
of authorized numbers of iterations. Denote by p1, p2, . . . , pp the ordered elements of P: P = {p1, p2, . . . , pp}
and p1 < p2 < . . . < pp.

January 17, 2017 10:22 main

5

In our Algorithm 1, p is 1 and p1 is b. But this algorithm can be seen as b functional compositions of
Ff . Obviously, it can be generalized with pi, pi ∈ P, functional compositions of Ff . Thus, for any pi ∈ P
we introduce the function Ff,pi : BN × J1,NKpi → BN de�ned by

Ff,pi(x, (u
0, u1, . . . , upi−1)) 7→

Ff (. . . (Ff (Ff (x, u0), u1), . . .), upi−1).

The considered space is XN,P = BN × SN,P , where SN,P = J1,NKN × PN. Each element in this space
is a pair where the �rst element is N-uple in BN, as in the previous space. The second element is a pair
((uk)k∈N, (v

k)k∈N) of in�nite sequences. The sequence (vk)k∈N de�nes how many iterations are executed at
time k before the next output, while (uk)k∈N details which elements are modi�ed.

Let us introduce the shift function Σ for any element of SN,P .

Σ : SN,P → SN,P(
(uk)k∈N, (v

k)k∈N
)
7→

(
σv

0 (
(uk)k∈N

)
,

σ
(
(vk)k∈N

))
.

In other words, Σ receives two sequences u and v, and it operates v0 shifts on the �rst sequence and a
single shift on the second one. Let us consider

Gf : XN,P → XN,P

(e, (u, v)) 7→
(
Ff,v0

(
e, (u0, . . . , uv

0−1
)
,Σ(u, v)

)
.

(2)

Then the outputs (y0, y1, . . .) produced by the CIPRNG2
f (u, v) generator [Wang et al., 2010] are by de�nition

the �rst components of the iterations X0 = (x0, (u, v)) and ∀n ∈ N, Xn+1 = Gf (Xn) on XN,P . The new
obtained generator can be shown as either a post-treatment over generators u and v, or a discrete dynamical
system on a set constituted by binary vectors and couple of integer sequences.

3.4. A metric on XN,P

We de�ne a distance d on XN,P as follows. Consider x = (e, s) and x̌ = (ě, š) in XN,P = BN × SN,P , where
s = (u, v) and š = (ǔ, v̌) are in SN,P = SJ1,NK × SP .

• e and ě are integers belonging in J0, 2N−1K. The Hamming distance on their binary decomposition, that is,
the number of dissimilar binary digits, constitutes the integral part of d(X, X̌).
• The fractional part is constituted by the di�erences between v0 and v̌0, followed by the di�erences be-
tween �nite sequences u0, u1, . . . , uv

0−1 and ǔ0, ǔ1, . . . , ǔv̌
0−1, followed by di�erences between v1 and v̌1,

followed by the di�erences between uv
0
, uv

0+1, . . . , uv
1−1 and ǔv̌

0
, ǔv̌

0+1, . . . , ǔv̌
1−1, etc. More precisely, let

p = blog10 (maxP)c+ 1 and n = blog10 (N)c+ 1.

� The p �rst digits of d(x, x̌) are |v0− v̌0| written in decimal numeration (and with p digits: zeros are added
on the left if needed).

� The next n × max (P) digits aim at measuring how much u0, u1, . . . , uv
0−1 di�er from ǔ0, ǔ1, . . . , ǔv̌

0−1.
The n �rst digits are |u0 − ǔ0|. They are followed by |u1 − ǔ1| written with n digits, etc.

∗ If v0 = v̌0, then the process is continued until |uv0−1 − ǔv̌
0−1| and the fractional part of d(X, X̌) is

completed by 0's until reaching p+ n×max (P) digits.

∗ If v0 < v̌0, then the max (P) blocs of n digits are |u0− ǔ0|, ..., |uv0−1− ǔv0−1|, ǔv0 (on n digits), ..., ǔv̌
0−1

(on n digits), followed by 0's if required.
∗ The case v0 > v̌0 is dealt similarly.

� The next p digits are |v1 − v̌1|, etc.

This distance has been de�ned to capture all aspects of divergences between two sequences generated
by the CIPRNG2

f method, when setting respectively (u, v) and (ǔ, v̌) as inputted couples of generators. The
integral part measures the bitwise Hamming distance between the two N-length binary vectors chosen as

January 17, 2017 10:22 main

6

seeds. The fractional part must decrease when the number of identical iterations applied by the CIPRNG2
f

discrete dynamical system on these seeds, in both cases (that is, when inputting either (u, v) or (ǔ, v̌)),
increases. More precisely, the fractional part will alternately measure the following elements:

• Do we iterate the same number of times between the next two outputs, when considering either (u, v) or
(ǔ, v̌)?
• Then, do we iterate the same components between the next two outputs of CIPRNG2

f ?
• etc.

Finally, zeros are put to be able to recover what occurred at a given iteration. Such aims are illustrated
in the two following examples. Running Example. Consider for instance that N = 13, P = {1, 2, 11} (so

p = 3, p = blog10 (maxP)c+ 1 = 2, while n = 2), and that s =

{
u = 6, 11, 5, ...
v = 1, 2, ...

while š =

{
ǔ = 6, 4 1, ...
v̌ = 2, 1, ...

.

So

dSN,P (s, š) = 0.01 0004000000000000000000 01 1005...

Indeed, the p = 2 �rst digits are 01, as |v0 − v̌0| = 1, and we use p digits to code this di�erence (P being
{1, 2, 11}, this di�erence can be equal to 10). We then take the v0 = 1 �rst terms of u, each term being coded
in n = 2 digits, that is, 06. As we can iterate at most max (P) times, we must complete this value by some
0's in such a way that the obtained result has n×max (P) = 22 digits, that is: 0600000000000000000000.
Similarly, the �rst v̌0 = 2 terms in ǔ are represented by 0604000000000000000000, and the value of their
digit per digit absolute di�erence is equal to 0004000000000000000000. These digits are concatenated to
01, and we start again with the remainder of the sequences.

Running Example. Consider now that N = 9 (n = 1), P = {2, 7} (p = 2, p = 1), and that

s =

{
u = 6, 7, 4, 2,...
v = 2, 2, ...

while š =

{
ǔ = 4, 9, 6, 3, 6, 6, 7, 9, 8, ...
v̌ = 7, 2, ...

So: dSN,P (s, š) = 0.5 2263667 1 5600000....
d can be more rigorously written as follows:

d(x, x̌) = dSN,P (s, š) + dBN(e, ě),

where:

• dBN is the Hamming distance,
• ∀s = (u, v), š = (ǔ, v̌) ∈ SN,P ,

dSN,P (s, š) =∑∞
k=0

1

10(k+1)p+knmax (P)

(
|vk − v̌k|

+

∣∣∣∣∣∑vk−1
l=0

u
∑k−1
m=0 v

m+l

10(l+1)n
−
∑v̌k−1

l=0

ǔ
∑k−1
m=0 v̌

m+l

10(l+1)n

∣∣∣∣∣
)

Let us show that,

Proposition 1. d is a distance on XN,P .

Proof. dBN is the Hamming distance. We will prove that dSN,P is a distance too, thus d will also be a
distance, being the sum of two distances.

• Obviously, dSN,P (s, š) > 0, and if s = š, then dSN,P (s, š) = 0. Conversely, if dSN,P (s, š) = 0, then ∀k ∈
N, vk = v̌k due to the de�nition of d. Then, as digits between positions p + 1 and p + n are null and
correspond to |u0 − ǔ0|, we can conclude that u0 = ǔ0. An extension of this result to the whole �rst
n×max (P) blocs leads to ui = ǔi, ∀i 6 v0 = v̌0, and by checking all the n×max (P) blocs, u = ǔ.

January 17, 2017 10:22 main

7

• dSN,P is clearly symmetric (dSN,P (s, š) = dSN,P (š, s)).
• The triangle inequality is obtained because the absolute value satis�es it as well.

�

Before being able to study the topological behavior of the general chaotic iterations, we must �rst
establish that:

Proposition 2. For all f : BN −→ BN, the function Gf is continuous on (X , d).

Proof. We will show this result by using the sequential continuity. Consider a sequence xn = (en, (un, vn)) ∈
XNN,P such that d(xn, x) −→ 0, for some x = (e, (u, v)) ∈ XN,P . We will show that d (Gf (xn), Gf (x)) −→ 0.
Remark that u and v are sequences of sequences.

As d(xn, x) −→ 0, there exists n0 ∈ N such that d(xn, x) < 10−(p+nmax (P)) (its p + nmax (P) �rst
digits are null). In particular, ∀n > n0, e

n = e, as the Hamming distance between the integral parts of x
and x̌ is 0. Similarly, due to the nullity of the p + nmax (P) �rst digits of d(xn, x), we can conclude that

∀n > n0, (vn)0 = v0, and that ∀n > n0, (un)0 = u0, (un)1 = u1, ..., (un)v
0−1 = uv

0−1. This implies that:

• Gf (xn)1 = Gf (x)1: they have the same Boolean vector as �rst coordinate.

• dSN,P (Σ(un, vn); Σ(u, v)) = 10p+nmax (P)dSN,P ((un, vn); (u, v)). As the right part of the equality tends to 0,
we can deduce that it is also the case for the left part of the equality, and so Gf (xn)2 is convergent to
Gf (x)2.

�

3.5. ΓP(f) as an extension of Γ(f)

Let P = {p1, p2, . . . , pp}. We de�ne the directed graph ΓP(f) as follows.

• Its vertices are the 2N elements of BN.

• Each vertex has

p∑
i=1

Npi arrows, namely all the p1, p2, . . . , pp tuples having their elements in J1,NK.

• There is an arc labeled u0, . . . , upi−1, i ∈ J1, pK between vertices x and y if and only if y =
Ff,pi(x, (u0, . . . , upi−1)).

It is not hard to see that the graph Γ{1}(f) is Γ(f) formerly introduced in [Bahi et al., 2011a] for the

CIPRNG1
f (u) generator, which is indeed CIPRNG2

f (u, (1)n∈N).

00 01

10 11

2

1

2

1

(a)Γ(f0)

00

11,22

01

11,22

112,121

211,222

10

11,22

112,121

111122

212 221

11,22

11

211,222

111122

212 221

12

21

12

21

(b)Γ{2,3}(f0)

Figure 2. Iterating f0 : (x1, x2) 7→ (x1, x2)

Running Example. Consider for instance N = 2, Let f0 : B2 −→ B2 be the negation function, i.e.,
f0(x1, x2) = (x1, x2), and consider P = {2, 3}. The graphs of iterations are given in Figure 2. Figure 2(a)

January 17, 2017 10:22 main

8

shows what happens when each iteration result is displayed . On the contrary, Figure 2(b) illustrates what
happens when 2 or 3 modi�cations are systematically applied before results are generated. Notice that here,
the orientations of arcs are not necessary since the function f0 is equal to its inverse f−1

0 .

3.6. Proofs of chaos

We will show that,

Proposition 3. ΓP(f) is strongly connected if and only if Gf is topologically transitive on (XN,P , d).

Proof. Suppose that ΓP(f) is strongly connected. Let x = (e, (u, v)), x̌ = (ě, (ǔ, v̌)) ∈ XN,P and ε > 0. We
will �nd a point y in the open ball B(x, ε) and n0 ∈ N such that Gn0

f (y) = x̌: this strong transitivity will
imply the transitivity property. We can suppose that ε < 1 without loss of generality.

Let us denote by (E, (U, V)) the elements of y. As y must be in B(x, ε) and ε < 1, E must be equal to
e. Let k = blog10(ε)c + 1. dSN,P ((u, v), (U, V)) must be lower than ε, so the k �rst digits of the fractional

part of dSN,P ((u, v), (U, V)) are null. Let k1 be the smallest integer such that, if V 0 = v0, ..., V k1 = vk1 ,

U0 = u0, ..., U
∑k1
l=0 V

l−1 = u
∑k1
l=0 v

l−1. Then dSN,P ((u, v), (U, V)) < ε. In other words, any y of the form

(e, ((u0, ..., u
∑k1
l=0 v

l−1), (v0, ..., vk1)) is in B(x, ε).

Let y0 such a point and z = Gk1f (y0) = (e′, (u′, v′)). ΓP(f) being strongly connected, there is a path

between e′ and ě. Denote by a0, . . . , ak2 the edges visited by this path. We denote by V k1 = |a0| (number
of terms in the �nite sequence a1), V

k1+1 = |a1|, ..., V k1+k2 = |ak2 |, and by Uk1 = a0
0, U

k1+1 = a1
0, ...,

Uk1+Vk1−1 = a
Vk1−1

0 , Uk1+Vk1 = a0
1, U

k1+Vk1+1 = a1
1,...

Let

y = (e, ((u0, . . . , u
∑k1
l=0 v

l−1, a0
0, . . . , a

|a0|
0 , a0

1, . . . , a
|a1|
1 , . . . , a0

k2 , . . . , a
|ak2 |
k2

, ǔ0, ǔ1, . . .),

(v0, . . . , vk1 , |a0|, . . . , |ak2 |, v̌0, v̌1, . . .))).

So y ∈ B(x, ε) and Gk1+k2
f (y) = x̌.

Conversely, if ΓP(f) is not strongly connected, then there are 2 vertices e1 and e2 such that there is no
path between e1 and e2. Thus, it is impossible to �nd (u, v) ∈ SN,P and n ∈ N such that Gnf (e, (u, v))1 = e2.

The open ball B(e2, 1/2) cannot be reached from any neighborhood of e1, and thus Gf is not transitive.
�

We now show that,

Proposition 4. If ΓP(f) is strongly connected, then Gf is regular on (XN,P , d).

Proof. Let x = (e, (u, v)) ∈ XN,P and ε > 0. As in the proofs of Prop. 3, let k1 ∈ N such that{
(e, ((u0, . . . , uv

k1−1
, U0, U1, . . .), (v0, . . . , vk1 , V 0, V 1, . . .)) |

∀i, j ∈ N, U i ∈ J1,NK, V j ∈ P
}
⊂ B(x, ε),

and y = Gk1f (e, (u, v)). ΓP(f) being strongly connected, there is at least a path from the
Boolean state y1 of y to e. Denote by a0, . . . , ak2 the edges of such a path. Then the point:

(e, ((u0, . . . , uv
k1−1

, a0
0, . . . , a

|a0|
0 , a0

1, . . . , a
|a1|
1 , . . . , a0

k2
, . . . ,

a
|ak2 |
k2

, u0, . . . , uv
k1−1

, a0
0, . . . , a

|ak2 |
k2

. . .),

(v0, . . . , vk1 , |a0|, . . . , |ak2 |, v0, . . . , vk1 , |a0|, . . . , |ak2 |, . . .)) is a periodic point in the neighborhood B(x, ε)
of x. �

Gf being topologically transitive and regular, we can thus conclude that

January 17, 2017 10:22 main

9

PRNG LCG MRG AWC SWB SWC GFSR INV
NIST 11 14 15 15 14 14 14

DieHARD 16 16 15 16 18 16 16

PRNG LCG MRG AWC SWB SWC GFSR INV
NIST 15 15 15 15 15 15 15

DieHARD 18 18 18 18 18 18 18

Theorem 1. Function Gf is chaotic on (XN,P , d) if and only if its iteration graph ΓP(f) is strongly con-
nected.

Corollary 1. The pseudorandom number generator χ14Secrypt is not chaotic on (XN,{b}, d) for the negation
function.

Proof. In this context, P is the singleton {b}. If b is even, no vertex e of Γ{b}(f0) can reach its neighborhood
and thus Γ{b}(f0) is not strongly connected. If b is odd, no vertex e of Γ{b}(f0) can reach itself and thus
Γ{b}(f0) is not strongly connected. �

3.7. Comparison with other well-known generators

The objective of this section is to evaluate the statistical performance of the proposed CIPRNG method, by
comparing the e�ects of its application on well-known but defective generators. We considered during the ex-
periments the following PRNGs: linear congruential generator (LCG), multiple recursive generators (MRG)
add-with-carry (AWC), subtract-with-borrow (SWB), shift-with-carry (SWC) Generalized Feedback Shift
Register (GFSR), and nonlinear inversive generator. A general overview and a reminder of these generators
can be found, for instance, in the documentation of the TestU01 statistical battery of tests [L'Ecuyer &
Simard, 2007]. For each studied generator, we have compared their scores according to both NIST [Bassham
et al., 2010] and DieHARD [Marsaglia, 1996] statistical batteries of tests, by launching them alone or inside
the CIPRNG2

f (v, v) dynamical system, where v is the considered PRNG set with most usual parameters,
and f is the vectorial negation.

Obtained results are reproduced in Tables 1 and 2. As can be seen, all these generators considered
alone failed to pass either the 15 NIST tests or the 18 DieHARD ones, while both batteries of tests are
always passed when applying the CIPRNG2

f post-treatment. Other results in the same direction, which can
be found in [Bahi et al., 2011b], illustrate the fact that operating a provable chaotic post-treatment on
defective generators tends to improve their statistical pro�le.

Such post-treatment depending on the properties of the inputted function f , we need to recall a general
scheme to produce functions and an iteration number b such that Γ{b} is strongly connected.

4. Functions with Strongly Connected Γ{b}(f)

First of all, let f : BN → BN. It has been shown [Bahi et al., 2011a, Theorem 4] that if its iteration graph
Γ(f) is strongly connected, then the output of χ14Secrypt follows a law that tends to the uniform distribution
if and only if its Markov matrix is a doubly stochastic one. In [Couchot et al., 2014, Section 4], we have
presented a general scheme which generates function with strongly connected iteration graph Γ(f) and with
doubly stochastic Markov probability matrix.

Basically, let us consider the N-cube. Let us next remove one Hamiltonian cycle in this one. When an
edge (x, y) is removed, an edge (x, x) is added.

Running Example. For instance, the iteration graph Γ(f∗) (given in Figure 1) is the 3-cube in which
the Hamiltonian cycle 000, 100, 101, 001, 011, 111, 110, 010, 000 has been removed.

We have �rst proven the following result, which states that the N-cube without one Hamiltonian cycle
has the awaited property with regard to the connectivity.

January 17, 2017 10:22 main

10

Theorem 2. The iteration graph Γ(f) issued from the N-cube where an Hamiltonian cycle is removed, is
strongly connected.

Moreover, when all the transitions have the same probability (1
n), we have proven the following results:

Theorem 3. The Markov Matrix M resulting from the N-cube in which an Hamiltonian cycle is removed,
is doubly stochastic.

Let us consider now a N-cube where an Hamiltonian cycle is removed. Let f be the corresponding
function. The question which remains to be solved is: can we always �nd b such that Γ{b}(f) is strongly
connected?

The answer is indeed positive. Furthermore, we have the following results which are stronger than
previous ones.

Theorem 4. There exists b ∈ N such that Γ{b}(f) is complete.

Proof. There is an arc (x, y) in the graph Γ{b}(f) if and only if M b
xy is positive where M is the Markov

matrix of Γ(f). It has been shown in [Bahi et al., 2011a, Lemma 3] that M is regular. Thus, there exists b
such that there is an arc between any x and y. �

This section ends with the idea of removing a Hamiltonian cycle in the N-cube. In such a context, the
Hamiltonian cycle is equivalent to a Gray code. Many approaches have been proposed as a way to build
such codes, for instance the Re�ected Binary Code. In this one and for a N-length cycle, one of the bits is

exactly switched 2N−1 times whereas the other bits are modi�ed at most

⌊
2N−1

N− 1

⌋
times. It is clear that

the function that is built from such a code would not provide a uniform output.
The next section presents how to build balanced Hamiltonian cycles in the N-cube with the objective

to embed them into the pseudorandom number generator.

5. Balanced Hamiltonian Cycle

Many approaches have been developed to solve the problem of building a Gray code in a N-cube [Robinson
& Cohn, 1981; Bhat & Savage, 1996; Suparta & Zanten, 2004; Bykov, 2016], according to properties the
produced code has to verify. For instance, [Bhat & Savage, 1996; Suparta & Zanten, 2004] focus on balanced
Gray codes. In the transition sequence of these codes, the number of transitions of each element must di�er
at most by 2. This uniformity is a global property on the cycle, i.e., a property that is established while
traversing the whole cycle. On the other hand, when the objective is to follow a subpart of the Gray code
and to switch each element approximately the same amount of times, local properties are wished. For
instance, the locally balanced property is studied in [Bykov, 2016] and an algorithm that establishes locally
balanced Gray codes is given.

The current context is to provide a function f : BN → BN by removing an Hamiltonian cycle in the
N-cube. Such a function is going to be iterated b times to produce a pseudorandom number, i.e., a vertex
in the N-cube. Obviously, the number of iterations b has to be su�ciently large to provide a uniform output
distribution. To reduce the number of iterations, it can be claimed that the provided Gray code should
ideally possess both balanced and locally balanced properties. However, both algorithms are incompatible
with the second one: balanced Gray codes that are generated by state of the art works [Suparta & Zanten,
2004; Bhat & Savage, 1996] are not locally balanced. Conversely, locally balanced Gray codes yielded by Igor
Bykov approach [Bykov, 2016] are not globally balanced. This section thus shows how the non deterministic
approach presented in [Suparta & Zanten, 2004] has been automatized to provide balanced Hamiltonian
paths such that, for each subpart, the number of switches of each element is as uniform as possible.

5.1. Analysis of the Robinson-Cohn extension algorithm

As far as we know three works, namely [Robinson & Cohn, 1981], [Bhat & Savage, 1996], and [Suparta &
Zanten, 2004] have addressed the problem of providing an approach to produce balanced gray code. The

January 17, 2017 10:22 main

11

authors of [Robinson & Cohn, 1981] introduced an inductive approach aiming at producing balanced Gray
codes, assuming the user gives a special subsequence of the transition sequence at each induction step. This
work has been strengthened in [Bhat & Savage, 1996] where the authors have explicitly shown how to build
such a subsequence. Finally the authors of [Suparta & Zanten, 2004] have presented the Robinson-Cohn
extension algorithm. Their rigorous presentation of this algorithm has mainly allowed them to prove two
properties. The former states that if N is a 2-power, a balanced Gray code is always totally balanced. The
latter states that for every N there exists a Gray code such that all transition count numbers are 2-powers
whose exponents are either equal or di�er from each other by 1. However, the authors do not prove that
the approach allows to build (totally balanced) Gray codes. What follows shows that this fact is established
and �rst recalls the approach.

Let be given a N− 2-bit Gray code whose transition sequence is SN−2. What follows is the Robinson-
Cohn extension method [Suparta & Zanten, 2004] which produces a N-bits Gray code.

(1) Let l be an even positive integer. Find u1, u2, . . . , ul−2, v (maybe empty) subsequences of SN−2 such
that SN−2 is the concatenation of

si1 , u0, si2 , u1, si3 , u2, . . . , sil−1, ul−2, sil , v

where i1 = 1, i2 = 2, and u0 = ∅ (the empty sequence).
(2) Replace in SN−2 the sequences u0, u1, u2, . . . , ul−2 by N− 1, u′(u1,N− 1,N), u′(u2,N,N− 1), u′(u3,N−

1,N), . . . , u′(ul−2,N,N − 1) respectively, where u′(u, x, y) is the sequence u, x, uR, y, u such that uR is
u in reversed order. The obtained sequence is further denoted as U .

(3) Construct the sequences V = vR,N, v, W = N − 1, SN−2,N, and let W ′ be W where the �rst two
elements have been exchanged.

(4) The transition sequence SN is thus the concatenation UR, V,W ′.

It has been proven in [Suparta & Zanten, 2004] that SN is the transition sequence of a cyclic N-bits Gray
code if SN−2 is. However, step (1) is not a constructive step that precises how to select the subsequences
which ensure that yielded Gray code is balanced. Following sections show how to choose the sequence l to
have the balance property.

5.2. Balanced Codes

Let us �rst recall how to formalize the balance property of a Gray code. Let L = w1, w2, . . . , w2N be the
sequence of a N-bits cyclic Gray code. The transition sequence S = s1, s2, . . . , s2n , si, 1 ≤ i ≤ 2N, indicates
which bit position changes between codewords at index i and i+1 modulo 2N. The transition count function
TCN : {1, . . . ,N} → {0, . . . , 2N} gives the number of times i occurs in S, i.e., the number of times the bit i
has been switched in L.

The Gray code is totally balanced if TCN is constant (and equal to 2N

N). It is balanced if for any two bit
indices i and j, |TCN(i)− TCN(j)| ≤ 2.

Running Example. Let L∗ = 000, 100, 101, 001, 011, 111, 110, 010 be the Gray code that corresponds
to the Hamiltonian cycle that has been removed in f∗. Its transition sequence is S = 3, 1, 3, 2, 3, 1, 3, 2 and
its transition count function is TC3(1) = TC3(2) = 2 and TC3(3) = 4. Such a Gray code is balanced.

Let L4 = 0000, 0010, 0110, 1110, 1111, 0111, 0011, 0001, 0101, 0100, 1100, 1101, 1001, 1011, 1010, 1000 be
a cyclic Gray code. Since S = 2, 3, 4, 1, 4, 3, 2, 3, 1, 4, 1, 3, 2, 1, 2, 4, TC4 is equal to 4 everywhere, this code
is thus totally balanced.

On the contrary, for the standard 4-bits Gray code Lst = 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,
1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000, we have TC4(1) = 8 TC4(2) = 4 TC4(3) = TC4(4) = 2 and
the code is neither balanced nor totally balanced.

Theorem 5. Let N in N∗, and aN be de�ned by aN = 2

⌊
2N

2N

⌋
. There exists then a sequence l in step (1)

of the Robinson-Cohn extension algorithm such that all the transition counts TCN(i) are aN or aN + 2 for
any i, 1 ≤ i ≤ N.

January 17, 2017 10:22 main

12

The proof is done by induction on N. Let us immediately verify that it is established for both odd
and even smallest values, i.e., 3 and 4. For the initial case where N = 3, i.e., N− 2 = 1 we successively
have: S1 = 1, 1, l = 2, u0 = ∅, and v = ∅. Thus again the algorithm successively produces U = 1, 2, 1,
V = 3, W = 2, 1, 1, 3, and W ′ = 1, 2, 1, 3. Finally, S3 is 1, 2, 1, 3, 1, 2, 1, 3 which obviously veri�es the
theorem. For the initial case where N = 4, i.e., N− 2 = 2 we successively have: S1 = 1, 2, 1, 2, l = 4,
u0, u1, u2 = ∅, ∅, ∅, and v = ∅. Thus again the algorithm successively produces U = 1, 3, 2, 3, 4, 1, 4, 3, 2,
V = 4, W = 3, 1, 2, 1, 2, 4, and W ′ = 1, 3, 2, 1, 2, 4. Finally, S4 is 2, 3, 4, 1, 4, 3, 2, 3, 1, 4, 1, 3, 2, 1, 2, 4 such
that TC4(i) = 4 and the theorem is established for odd and even initial values.

For the inductive case, let us �rst de�ne some variables. Let cN (resp. dN) be the number of elements
whose transition count is exactly aN (resp aN + 2). Both of these variables are de�ned by the system

{
cN + dN = N
cNaN + dN(aN + 2) = 2N

⇔

dN =
2N − N.aN

2
cN = N− dN

Since aN is even, dN is an integer. Let us �rst prove that both cN and dN are positive integers. Let
qN and rN, respectively, be the quotient and the remainder in the Euclidean division of 2N by 2N, i.e.,
2N = qN.2N+rN, with 0 ≤ rN < 2N. First of all, the integer r is even since rN = 2N−qN.2N = 2(2N−1−qN.N).

Next, aN is 2N−rN
N . Consequently dN is rN/2 and is thus a positive integer s.t. 0 ≤ dN < N. The proof for cN

is obvious.
For any i, 1 ≤ i ≤ N, let ziN (resp. tiN and biN) be the occurrence number of element i in the sequence

u0, . . . , ul−2 (resp. in the sequences si1 , . . . , sil and v) in step (1) of the algorithm.
Due to the de�nition of u′ in step (2), 3.ziN + tiN is the number of element i in the sequence U . It is

clear that the number of element i in the sequence V is 2biN due to step (3). We thus have the following
system: {

3.ziN + tiN + 2.biN + TCN−2(i) = TCN(i)
ziN + tiN + biN = TCN−2(i)

⇔

{
ziN =

TCN(i)− 2.TCN−2(i)− biN
2

tiN = TCN−2(i)− ziN − biN
(3)

In this set of 2 equations with 3 unknown variables, let bi be set with 0. In this case, since TCN is even
(equal to aN or to aN+2), the variable ziN is thus an integer. Let us now prove that the resulting system has
always positive integer solutions zi, ti, 0 ≤ zi, ti ≤ TCN−2(i) and s.t. their sum is equal to TCN−2(i). This
latter constraint is obviously established if the system has a solution. We thus have the following system.

{
ziN =

TCN(i)− 2.TCN−2(i)

2
tiN = TCN−2(i)− ziN

(4)

The de�nition of TCN(i) depends on the value of N. When 3 ≤ N ≤ 7, values are de�ned as follows:

TC3 = [2, 2, 4]

TC5 = [6, 6, 8, 6, 6]

TC7 = [18, 18, 20, 18, 18, 18, 18]

TC4 = [4, 4, 4, 4]

TC6 = [10, 10, 10, 10, 12, 12]

It is not di�cult to check that all these instanciations verify the aforementioned constraints.

January 17, 2017 10:22 main

13

When N ≥ 8, TCN(i) is de�ned as follows:

TCN(i) =

{
aN if 1 ≤ i ≤ cN
aN + 2 if cN + 1 ≤ i ≤ cN + dN

(5)

We thus have

TCN(i)− 2.TCN−2(i) ≥ aN − 2(aN−2 + 2)

≥ 2N−rN
N − 2

(
2N−2−rN−2

N−2 + 2
)

≥ 2N−2N
N − 2

(
2N−2

N−2 + 2
)

≥ (N−2).2N−2N.2N−2−6N(N−2)
N.(N−2)

A simple variation study of the function t : R→ R such that x 7→ t(x) = (x−2).2x−2x.2x−2−6x(x−2)
shows that its derivative is strictly positive if x ≥ 6 and t(8) = 224. The integer TCN(i) − 2.TCN−2(i) is
thus positive for any N ≥ 8 and the proof is established.

For each element i, we are then left to choose ziN positions among TCN(i), which leads to
(
TCN(i)
ziN

)
possibilities. Notice that all such choices lead to an Hamiltonian path.

6. Mixing Time

This section considers functions f : BN → BN issued from an hypercube where an Hamiltonian path has
been removed as described in the previous section. Notice that the iteration graph is always a subgraph of
N-cube augmented with all the self-loop, i.e., all the edges (v, v) for any v ∈ BN. Next, if we add probabilities
on the transition graph, iterations can be interpreted as Markov chains.

Running Example. Let us consider for instance the graph Γ(f) de�ned in Figure 1 and the probability
function p de�ned on the set of edges as follows:

p(e)

{
= 2

3 if e = (v, v) with v ∈ B3,
= 1

6 otherwise.

The matrix P of the Markov chain associated to the function f∗ and to its probability function p is

P =
1

6

4 1 1 0 0 0 0 0
1 4 0 0 0 1 0 0
0 0 4 1 0 0 1 0
0 1 1 4 0 0 0 0
1 0 0 0 4 0 1 0
0 0 0 0 1 4 0 1
0 0 0 0 1 0 4 1
0 0 0 1 0 1 0 4

.

A speci�c random walk in this modi�ed hypercube is �rst introduced (see Section 6.1). We further
study this random walk in a theoretical way to provide an upper bound of fair sequences (see Section 6.2).
We �nally complete this study with experimental results that reduce this bound (Sec. 6.3). For a general
reference on Markov chains, see [Levin et al., 2006], and particularly Chapter 5 on stopping times.

6.1. Formalizing the Random Walk

First of all, let π, µ be two distributions on BN. The total variation distance between π and µ is denoted
‖π − µ‖TV and is de�ned by

‖π − µ‖TV = max
A⊂BN

|π(A)− µ(A)|.

It is known that

‖π − µ‖TV =
1

2

∑
X∈BN

|π(X)− µ(X)|.

January 17, 2017 10:22 main

14

Moreover, if ν is a distribution on BN, one has

‖π − µ‖TV ≤ ‖π − ν‖TV + ‖ν − µ‖TV

Let P be the matrix of a Markov chain on BN. For any X ∈ BN, let P (X, ·) be the distribution induced
by the bin(X)-th row of P , where bin(X) is the integer whose binary encoding is X. If the Markov chain
induced by P has a stationary distribution π, then we de�ne

d(t) = max
X∈BN

‖P t(X, ·)− π‖TV.

and

tmix(ε) = min{t | d(t) ≤ ε}.

Intuitively speaking, tmix(ε) is the time/steps required to be sure to be ε-close to the stationary distri-
bution, wherever the chain starts.

One can prove that

tmix(ε) ≤ dlog2(ε−1)etmix(
1

4
)

Let (Xt)t∈N be a sequence of BN valued random variables. A N-valued random variable τ is a stopping
time for the sequence (Xi) if for each t there exists Bt ⊆ (BN)t+1 such that {τ = t} = {(X0, X1, . . . , Xt) ∈
Bt}. In other words, the event {τ = t} only depends on the values of (X0, X1, . . . , Xt), not on Xk with
k > t.

Let (Xt)t∈N be a Markov chain and f(Xt−1, Zt) a random mapping representation of the Markov chain.
A randomized stopping time for the Markov chain is a stopping time for (Zt)t∈N. If the Markov chain is
irreducible and has π as stationary distribution, then a stationary time τ is a randomized stopping time
(possibly depending on the starting position X), such that the distribution of Xτ is π:

PX(Xτ = Y) = π(Y).

6.2. Upper bound of Stopping Time

A stopping time τ is a strong stationary time if Xτ is independent of τ . The following result will be
useful [Levin et al., 2006, Proposition 6.10],

Theorem 6. If τ is a strong stationary time, then d(t) ≤ maxX∈BN PX(τ > t).

Let E = {(X,Y) | X ∈ BN, Y ∈ BN, X = Y or X ⊕ Y ∈ 0∗10∗}. In other words, E is the set of all
the edges in the classical N-cube. Let h be a function from BN into J1,NK. Intuitively speaking h aims at
memorizing for each node X ∈ BN whose edge is removed in the Hamiltonian cycle, i.e., which bit in J1,NK
cannot be switched.

We denote by Eh the set E \ {(X,Y) | X ⊕ Y = 0N−h(X)10h(X)−1}. This is the set of the modi�ed
hypercube, i.e., the N-cube where the Hamiltonian cycle h has been removed.

We de�ne the Markov matrix Ph for each line X and each column Y as follows:Ph(X,X) = 1
2 + 1

2N
Ph(X,Y) = 0 if (X,Y) /∈ Eh
Ph(X,Y) = 1

2N if X 6= Y and (X,Y) ∈ Eh
(6)

We denote by h : BN → BN the function such that for any X ∈ BN, (X,h(X)) ∈ E and X ⊕ h(X) =
0N−h(X)10h(X)−1. The function h is said to be square-free if for every X ∈ BN, h(h(X)) 6= X.

Lemma 1. If h is bijective and square-free, then h(h
−1

(X)) 6= h(X).

January 17, 2017 10:22 main

15

Proof. Let h be bijective. Let k ∈ J1,NK s.t. h(h
−1

(X)) = k. Then (h
−1

(X), X) belongs to E and h
−1

(X)⊕
X = 0N−k10k−1. Let us suppose h(X) = h(h

−1
(X)). In such a case, h(X) = k. By de�nition of h,

(X,h(X)) ∈ E and X ⊕ h(X) = 0N−h(X)10h(X)−1 = 0N−k10k−1. Thus h(X) = h
−1

(X), which leads to
h(h(X)) = X. This contradicts the square-freeness of h. �

Let Z be a random variable that is uniformly distributed over J1,NK×B. For X ∈ BN, we de�ne, with
Z = (i, b), {

f(X,Z) = X ⊕ (0N−i10i−1) if b = 1 and i 6= h(X),
f(X,Z) = X otherwise.

The Markov chain is thus de�ned as

Xt = f(Xt−1, Zt)

An integer ` ∈ J1,NK is said fair at time t if there exists 0 ≤ j < t such that Zj+1 = (`, ·) and h(Xj) 6= `.
In other words, there exists a date j before t where the �rst element of the random variable Z is exactly l
(i.e., l is the strategy at date j) and where the con�guration Xj allows to cross the edge l.

Let τstop be the �rst time all the elements of J1,NK are fair. The integer τstop is a randomized stopping
time for the Markov chain (Xt).

Lemma 2. The integer τstop is a strong stationary time.

Proof. Let τ` be the �rst time that ` is fair. The random variable Zτ` is of the form (`, b) such that b = 1
with probability 1

2 and b = 0 with probability 1
2 . Since h(Xτ`−1) 6= ` the value of the `-th bit of Xτ` is 0 or

1 with the same probability (1
2). This probability is independent of the value of the other bits.

Moving next in the chain, at each step, the l-th bit is switched from 0 to 1 or from 1 to 0 each time
with the same probability. Therefore, for t ≥ τ`, the `-th bit of Xt is 0 or 1 with the same probability, and
independently of the value of the other bits, proving the lemma. �

Theorem 7. If h is bijective and square-free, then E[τstop] ≤ 8N2 + 4N ln(N + 1).

For each X ∈ BN and ` ∈ J1,NK, let SX,` be the random variable that counts the number of steps from
X until we reach a con�guration where ` is fair. More formally

SX,` = min{t ≥ 1 | h(Xt−1) 6= ` and Zt = (`, .)
and X0 = X}.

Lemma 3. Let h is a square-free bijective function. Then for all X and all `, the inequality E[SX,`] ≤ 8N2

is established.

Proof. For every X, every `, one has P(SX,` ≤ 2) ≥ 1
4N2 . Let X0 = X. Indeed,

• if h(X) 6= `, then P(SX,` = 1) = 1
2N ≥

1
4N2 .

• otherwise, h(X) = `, then P(SX,` = 1) = 0. But in this case, intuitively, it is possible to move from X

to h
−1

(X) (with probability 1
2N). And in h

−1
(X) the l-th bit can be switched. More formally, since h is

square-free, h(X) = h(h(h
−1

(X))) 6= h
−1

(X). It follows that (X,h
−1

(X)) ∈ Eh. We thus have P (X1 =

h
−1

(X)) = 1
2N . Now, by Lemma 1, h(h

−1
(X)) 6= h(X). Therefore P(Sx,` = 2 | X1 = h

−1
(X)) = 1

2N , proving

that P(Sx,` ≤ 2) ≥ 1
4N2 .

Therefore, P(SX,` ≥ 3) ≤ 1 − 1
4N2 . By induction, one has, for every i, P(SX,` ≥ 2i) ≤

(
1− 1

4N2

)i
.

Moreover, since SX,` is positive, it is known [Mitzenmacher & Upfal, 2005, lemma 2.9], that

E[SX,`] =
+∞∑
i=1

P(SX,` ≥ i).

January 17, 2017 10:22 main

16

Since P(SX,` ≥ i) ≥ P(SX,` ≥ i+ 1), one has

E[SX,`] =
∑+∞

i=1 P(SX,` ≥ i)
≤ P(SX,` ≥ 1) + P(SX,` ≥ 2)

+2
∑+∞

i=1 P(SX,` ≥ 2i).

Consequently,

E[SX,`] ≤ 1 + 1 + 2
+∞∑
i=1

(
1− 1

4N2

)i
= 2 + 2(4N2 − 1) = 8N2,

which concludes the proof. �

Let τ ′stop be the time used to get all the bits but one fair.

Lemma 4. One has E[τ ′stop] ≤ 4N ln(N + 1).

Proof. This is a classical Coupon Collector's like problem. Let Wi be the random variable counting the
number of moves done in the Markov chain while we had exactly i− 1 fair bits. One has τ ′stop =

∑N−1
i=1 Wi.

But when we are at position X with i − 1 fair bits, the probability of obtaining a new fair bit is either
1− i−1

N if h(X) is fair, or 1− i−2
N if h(X) is not fair.

Therefore, P(Wi = k) ≤
(
i−1
N

)k−1 N−i+2
N . Consequently, we have P(Wi ≥ k) ≤

(
i−1
N

)k−1 N−i+2
N−i+1 . It

follows that E[Wi] =
∑+∞

k=1 P(Wi ≥ k) ≤ N N−i+2
(N−i+1)2

≤ 4N
N−i+2 .

It follows that E[Wi] ≤ 4N
N−i+2 . Therefore

E[τ ′stop] =

N−1∑
i=1

E[Wi] ≤ 4N
N−1∑
i=1

1

N− i+ 2
= 4N

N+1∑
i=3

1

i
.

But
∑N+1

i=1
1
i ≤ 1 + ln(N+ 1). It follows that 1 + 1

2 +
∑N+1

i=3
1
i ≤ 1 + ln(N+ 1). Consequently, E[τ ′stop] ≤

4N(−1
2 + ln(N + 1)) ≤ 4N ln(N + 1). �

One can now prove Theorem 7.

Proof. Since τ ′stop is the time used to obtain N − 1 fair bits. Assume that the last unfair bit is `. One
has τstop = τ ′stop + SXτ ,`, and therefore E[τstop] = E[τ ′stop] + E[SXτ ,`]. Therefore, Theorem 7 is a direct
application of Lemma 3 and 4. �

Now using Markov Inequality, one has PX(τ > t) ≤ E[τ]
t . With tn = 32N2 + 16N ln(N + 1), one

obtains: PX(τ > tn) ≤ 1
4 . Therefore, using the de�nition of tmix and Theorem 6, it follows that tmix(1

4) ≤
32N2 + 16N ln(N + 1) = O(N2) and that

Notice that the calculus of the stationary time upper bound is obtained under the following constraint:
for each vertex in the N-cube there are one ongoing arc and one outgoing arc that are removed. The
calculus doesn't consider (balanced) Hamiltonian cycles, which are more regular and more binding than
this constraint. Moreover, the bound is obtained using the coarse Markov Inequality. For the classical (lazy)
random walk the N-cube, without removing any Hamiltonian cycle, the mixing time is in Θ(N lnN). We
conjecture that in our context, the mixing time is also in Θ(N lnN).

In this latter context, we claim that the upper bound for the stopping time should be reduced. This
fact is studied in the next section.

6.3. Practical Evaluation of Stopping Times

Let be given a function f : BN → BN and an initial seed x0. The pseudo code given in Algorithm 2
returns the smallest number of iterations such that all elements ` ∈ J1,NK are fair. It allows to deduce an
approximation of E[τstop] by calling this code many times with many instances of function and many seeds.

January 17, 2017 10:22 main

17

Input: a function f , an initial con�guration x0 (N bits)
Output: a number of iterations nbit
nbit← 0;

x← x0;
fair← ∅;
while |fair| < N do

s← Random(N) ;
image← f(x);
if Random(1) 6= 0 and x[s] 6= image[s] then
fair← fair ∪ {s};
x[s]← image[s];

end

nbit← nbit + 1;

end

return nbit;
Algorithm 2: Pseudo Code of stopping time computation

4 6 8 10 12 14 16
20

40

60

80

100

120

experimental evaluation
2xln(2x+8)

Figure 3. Average Stopping Time Approximation

Practically speaking, for each number N, 3 ≤ N ≤ 16, 10 functions have been generated according to the
method presented in Section 5. For each of them, the calculus of the approximation of E[τstop] is executed
10000 times with a random seed. Figure 3 summarizes these results. A circle represents the approximation
of E[τstop] for a given N. The line is the graph of the function x 7→ 2x ln(2x+ 8). It can �rstly be observed
that the approximation is largely smaller than the upper bound given in Theorem 7. It can be further
deduced that the conjecture of the previous section is realistic according to the graph of x 7→ 2x ln(2x+ 8).

7. Experiments

Let us �nally present the pseudorandom number generator χ16HamG, which is based on random walks in
Γ{b}(f). More precisely, let be given a Boolean map f : BN → BN, a PRNG Random, an integer b that

corresponds to an iteration number (i.e., the length of the walk), and an initial con�guration x0. Starting
from x0, the algorithm repeats b times a random choice of which edge to follow, and crosses this edge
provided it is allowed to do so, i.e., when Random(1) is not null. The �nal con�guration is thus outputted.
This PRNG is formalized in Algorithm 3.

This PRNG is slightly di�erent from χ14Secrypt recalled in Algorithm 1. As this latter, the length of
the random walk of our algorithm is always constant (and is equal to b). However, in the current version,

January 17, 2017 10:22 main

18

Input: a function f , an iteration number b, an initial con�guration x0 (N bits)
Output: a con�guration x (N bits)
x← x0;
for i = 0, . . . , b− 1 do

if Random(1) 6= 0 then

s0 ← Random(N);

x← Ff (x, s0);

end

end

return x;
Algorithm 3: Pseudo Code of the χ16HamG PRNG

Function f f(x), for x in (0, 1, 2, . . . , 2n − 1) N b
a© [13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8] 4 64
b© [29, 22, 25, 30, 19, 27, 24, 16, 21, 6, 5, 28, 23, 26, 1, 17, 5 78

31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 7, 20, 11, 18, 0, 4]
[55, 60, 45, 44, 58, 62, 61, 48, 53, 50, 52, 36, 59, 34, 33, 49,
15, 42, 47, 46, 35, 10, 57, 56, 7, 54, 39, 37, 51, 2, 1, 40, 63,

c© 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 6 88
12, 29, 8, 43, 14, 41, 0, 5, 38, 4, 6, 11, 3, 9, 32]

[111, 124, 93, 120, 122, 114, 89, 121, 87, 126, 125, 84, 123, 82,
112, 80, 79, 106, 105, 110, 75, 107, 73, 108, 119, 100, 117, 116,
103, 102, 101, 97, 31, 86, 95, 94, 83, 26, 88, 24, 71, 118, 69,
68, 115, 90, 113, 16, 15, 76, 109, 72, 74, 10, 9, 104, 7, 6, 65,

d© 70, 99, 98, 64, 96, 127, 54, 53, 62, 51, 59, 56, 60, 39, 52, 37, 7 99
36, 55, 58, 57, 49, 63, 44, 47, 40, 42, 46, 45, 41, 35, 34, 33,
38, 43, 50, 32, 48, 29, 28, 61, 92, 91, 18, 17, 25, 19, 30, 85,
22, 27, 2, 81, 0, 13, 78, 77, 14, 3, 11, 8, 12, 23, 4, 21, 20,

67, 66, 5, 1]
[223, 238, 249, 254, 243, 251, 233, 252, 183, 244, 229, 245, 227,
246, 240, 176, 175, 174, 253, 204, 203, 170, 169, 248, 247, 226,
228, 164, 163, 162, 161, 192, 215, 220, 205, 216, 155, 222, 221,
208, 213, 150, 212, 214, 219, 211, 145, 209, 239, 202, 207, 140,
195, 234, 193, 136, 231, 230, 199, 197, 131, 198, 225, 200, 63,
188, 173, 184, 186, 250, 57, 168, 191, 178, 180, 52, 187, 242,

241, 48, 143, 46, 237, 236, 235, 138, 185, 232, 135, 38, 181, 165,
35, 166, 33, 224, 31, 30, 153, 158, 147, 218, 217, 156, 159, 148,

e© 151, 149, 19, 210, 144, 152, 141, 206, 13, 12, 171, 10, 201, 128, 8 109
133, 130, 132, 196, 3, 194, 137, 0, 255, 124, 109, 120, 122, 106,
125, 104, 103, 114, 116, 118, 123, 98, 97, 113, 79, 126, 111, 110,
99, 74, 121, 72, 71, 70, 117, 101, 115, 102, 65, 112, 127, 90, 89,

94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93,
108, 107, 78, 105, 64, 69, 66, 68, 100, 75, 67, 73, 96, 55, 190,
189, 62, 51, 59, 41, 60, 119, 182, 37, 53, 179, 54, 177, 32, 45,
44, 61, 172, 11, 58, 9, 56, 167, 34, 36, 4, 43, 50, 49, 160, 23,

28, 157, 24, 26, 154, 29, 16, 21, 18, 20, 22, 27, 146, 25, 17, 47,
142, 15, 14, 139, 42, 1, 40, 39, 134, 7, 5, 2, 6, 129, 8]

we add the constraint that the probability to execute the function Ff is equal to 0.5 since the output of
Random(1) is uniform in {0, 1}. This constraint is added to match the theoretical framework of Sect. 6.

Notice that the chaos property of Gf given in Sect.3 only requires the graph Γ{b}(f) to be strongly
connected. Since the χ16HamG algorithm only adds probability constraints on existing edges, it preserves
this property.

For each number N = 4, 5, 6, 7, 8 of bits, we have generated the functions according to the method
given in Sect. 4 and 5. For each N, we have then restricted this evaluation to the function whose Markov
Matrix (issued from Eq. (6)) has the smallest practical mixing time. Such functions are given in Table 3.
In this table, let us consider, for instance, the function a© from B4 to B4 de�ned by the following images
: [13, 10, 9, 14, 3, 11, 1, 12, 15, 4, 7, 5, 2, 6, 0, 8]. In other words, the image of 3 (0011) by a© is 14 (1110): it is
obtained as the binary value of the fourth element in the second list (namely 14).

In this table the column that is labeled with b gives the practical mixing time where the deviation to
the standard distribution is inferior than 10−6.

Let us �rst discuss about results against the NIST test suite. In our experiments, 100 sequences (s
= 100) of 1,000,000 bits are generated and tested. If the value PT of any test is smaller than 0.0001, the

January 17, 2017 10:22 main

19

Test MT4 MT5 MT6 MT7 MT8
Frequency (Monobit) 0.924 (1.0) 0.678 (0.98) 0.102 (0.97) 0.213 (0.98) 0.719 (0.99)

Frequency within a Block 0.514 (1.0) 0.419 (0.98) 0.129 (0.98) 0.275 (0.99) 0.455 (0.99)

Cumulative Sums (Cusum) * 0.668 (1.0) 0.568 (0.99) 0.881 (0.98) 0.529 (0.98) 0.657 (0.995)

Runs 0.494 (0.99) 0.595 (0.97) 0.071 (0.97) 0.017 (1.0) 0.834 (1.0)

Longest Run of Ones in a Block 0.366 (0.99) 0.554 (1.0) 0.042 (0.99) 0.051 (0.99) 0.897 (0.97)

Binary Matrix Rank 0.275 (0.98) 0.494 (0.99) 0.719 (1.0) 0.334 (0.98) 0.637 (0.99)

Discrete Fourier Transform (Spectral) 0.122 (0.98) 0.108 (0.99) 0.108 (1.0) 0.514 (0.99) 0.534 (0.98)

Non-overlapping Template Matching* 0.483 (0.990) 0.507 (0.990) 0.520 (0.988) 0.494 (0.988) 0.515 (0.989)

Overlapping Template Matching 0.595 (0.99) 0.759 (1.0) 0.637 (1.0) 0.554 (0.99) 0.236 (1.0)

Maurer's "Universal Statistical" 0.202 (0.99) 0.000 (0.99) 0.514 (0.98) 0.883 (0.97) 0.366 (0.99)

Approximate Entropy (m=10) 0.616 (0.99) 0.145 (0.99) 0.455 (0.99) 0.262 (0.97) 0.494 (1.0)

Random Excursions * 0.275 (1.0) 0.495 (0.975) 0.465 (0.979) 0.452 (0.991) 0.260 (0.989)

Random Excursions Variant * 0.382 (0.995) 0.400 (0.994) 0.417 (0.984) 0.456 (0.991) 0.389 (0.991)

Serial* (m=10) 0.629 (0.99) 0.963 (0.99) 0.366 (0.995) 0.537 (0.985) 0.253 (0.995)

Linear Complexity 0.494 (0.99) 0.514 (0.98) 0.145 (1.0) 0.657 (0.98) 0.145 (0.99)

Test a© b© c© d© e©
Frequency (Monobit) 0.129 (1.0) 0.181 (1.0) 0.637 (0.99) 0.935 (1.0) 0.978 (1.0)

Frequency within a Block 0.275 (1.0) 0.534 (0.98) 0.066 (1.0) 0.719 (1.0) 0.366 (1.0)

Cumulative Sums (Cusum) * 0.695 (1.0) 0.540 (1.0) 0.514 (0.985) 0.773 (0.995) 0.506 (0.99)

Runs 0.897 (0.99) 0.051 (1.0) 0.102 (0.98) 0.616 (0.99) 0.191 (1.0)

Longest Run of Ones in a Block 0.851 (1.0) 0.595 (0.99) 0.419 (0.98) 0.616 (0.98) 0.897 (1.0)

Binary Matrix Rank 0.419 (1.0) 0.946 (0.99) 0.319 (0.99) 0.739 (0.97) 0.366 (1.0)

Discrete Fourier Transform (Spectral) 0.867 (1.0) 0.514 (1.0) 0.145 (1.0) 0.224 (0.99) 0.304 (1.0)

Non-overlapping Template Matching* 0.542 (0.990) 0.512 (0.989) 0.505 (0.990) 0.494 (0.989) 0.493 (0.991)

Overlapping Template Matching 0.275 (0.99) 0.080 (0.99) 0.574 (0.98) 0.798 (0.99) 0.834 (0.99)

Maurer's "Universal Statistical" 0.383 (0.99) 0.991 (0.98) 0.851 (1.0) 0.595 (0.98) 0.514 (1.0)

Approximate Entropy (m=10) 0.935 (1.0) 0.719 (1.0) 0.883 (1.0) 0.719 (0.97) 0.366 (0.99)

Random Excursions * 0.396 (0.991) 0.217 (0.989) 0.445 (0.975) 0.743 (0.993) 0.380 (0.990)

Random Excursions Variant * 0.486 (0.997) 0.373 (0.981) 0.415 (0.994) 0.424 (0.991) 0.380 (0.991)

Serial* (m=10) 0.350 (1.0) 0.678 (0.995) 0.287 (0.995) 0.740 (0.99) 0.301 (0.98)

Linear Complexity 0.455 (0.99) 0.867 (1.0) 0.401 (0.99) 0.191 (0.97) 0.699 (1.0)

sequences are considered to be not good enough and the generator is unsuitable.
Table 4 shows PT of sequences based on χ16HamG using di�erent functions, namely a©,. . . , e©. In this

algorithm implementation, the embedded PRNG Random is the default Python PRNG, i.e., the Mersenne
Twister algorithm [Matsumoto & Nishimura, 1998]. Implementations for N = 4, . . . , 8 of this algorithm is
evaluated through the NIST test suite and results are given in columns MT4, . . . , MT8. If there are at least
two statistical values in a test, this test is marked with an asterisk and the average value is computed to
characterize the statistics.

We �rst can see in Table 4 that all the rates are greater than 97/100, i.e., all the generators achieve
to pass the NIST battery of tests. It can be noticed that adding chaos properties for Mersenne Twister
algorithm does not reduce its security against this statistical tests.

8. Conclusion

This work has assumed a Boolean map f which is embedded into a discrete-time dynamical system Gf .
This one is supposed to be iterated a �xed number p1 or p2,. . . , or p times before its output is considered.
This work has �rst shown that iterations of Gf are chaotic if and only if its iteration graph ΓP(f) is strongly
connected where P is {p1, . . . , p}. It can be deduced that in such a situation a PRNG, which iterates Gf ,
satis�es the property of chaos and can be used in simulating chaos phenomena.

We then have shown that a previously presented approach can be directly applied here to generate
function f with strongly connected ΓP(f). The iterated map inside the generator is built by �rst removing
from a N-cube a balanced Hamiltonian cycle and next by adding a self loop to each vertex. The PRNG can
thus be seen as a random walk of length in P into this new N-cube. We have presented an e�cient method
to compute such a balanced Hamiltonian cycle. This method is an algebraic solution of an undeterministic
approach [Suparta & Zanten, 2004] and has a low complexity. To the best of the authors knowledge, this
is the �rst time a full automatic method to provide chaotic PRNGs is given. Practically speaking, this
approach preserves the security properties of the embedded PRNG, even if it remains quite cost expensive.

We furthermore have presented an upper bound on the number of iterations that is su�cient to obtain
an uniform distribution of the output. Such an upper bound is quadratic on the number of bits to output.
Experiments have however shown that such a bound is in N. log(N) in practice. Finally, experiments through
the NIST battery have shown that the statistical properties are almost established for N = 4, 5, 6, 7, 8 and
should be observed for any positive integer N.

In future work, we intend to understand the link between statistical tests and the properties of chaos
for the associated iterations. By doing so, relations between desired statistically unbiased behaviors and

January 17, 2017 10:22 main

20 REFERENCES

topological properties will be understood, leading to better choices in iteration functions. Conditions allow-
ing the reduction of the stopping-time will be investigated too, while other modi�cations of the hypercube
will be regarded in order to enlarge the set of known chaotic and random iterations.

Acknowledgements

This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01). Computa-
tions presented in this article were realised on the supercomputing facilities provided by the Mésocentre de
calcul de Franche-Comté.

References

Bahi, J., Couchot, J.-F., Guyeux, C. & Richard, A. [2011a] �On the link between strongly connected it-
eration graphs and chaotic boolean discrete-time dynamical systems,� FCT'11, 18th Int. Symp. on
Fundamentals of Computation Theory (Oslo, Norway), pp. 126�137.

Bahi, J., Fang, X., Guyeux, C. & Wang, Q. [2011b] �On the design of a family of CI pseudo-random number
generators,� WICOM'11, 7th Int. IEEE Conf. on Wireless Communications, Networking and Mobile
Computing (Wuhan, China), pp. 1�4.

Banks, J., Brooks, J., Cairns, G. & Stacey, P. [1992] �On Devaney's de�nition of chaos,� Amer. Math.
Monthly 99, 332�334.

Bassham, L. E., III, Rukhin, A. L., Soto, J., Nechvatal, J. R., Smid, M. E., Barker, E. B., Leigh, S. D.,
Levenson, M., Vangel, M., Banks, D. L., Heckert, N. A., Dray, J. F. & Vo, S. [2010] �Sp 800-22 rev. 1a. a
statistical test suite for random and pseudorandom number generators for cryptographic applications,�
Tech. rep., National Institute of Standards & Technology, Gaithersburg, MD, United States.

Bhat, G. S. & Savage, C. D. [1996] �Balanced gray codes,� Electr. J. Comb. 3, URL http://www.
combinatorics.org/Volume_3/Abstracts/v3i1r25.html.

Bykov, I. S. [2016] �On locally balanced gray codes,� Journal of Applied and Industrial Mathematics 10,
78�85.

Cao, L., Min, L. & Zang, H. [2009] �A chaos-based pseudorandom number generator and performance anal-
ysis,� Computational Intelligence and Security, 2009. CIS '09. International Conference on (IEEE),
pp. 494�498.

Couchot, J., Héam, P., Guyeux, C., Wang, Q. & Bahi, J. M. [2014] �Pseudorandom number generators
with balanced gray codes,� SECRYPT 2014 - Proceedings of the 11th International Conference on
Security and Cryptography, Vienna, Austria, 28-30 August, 2014, eds. Obaidat, M. S., Holzinger, A.
& Samarati, P. (SciTePress), ISBN 978-989-758-045-1, pp. 469�475.

Devaney, R. L. [1989] An Introduction to Chaotic Dynamical Systems, 2nd ed. (Addison-Wesley, Redwood
City, CA).

Guyeux, C., Wang, Q. & Bahi, J. [2010] �Improving random number generators by chaotic iterations ap-
plication in data hiding,� Computer Application and System Modeling (ICCASM), 2010 International
Conference on (IEEE), pp. V13�643�V13�647.

L'Ecuyer, P. & Simard, R. J. [2007] �TestU01: A C library for empirical testing of random number genera-
tors,� ACM Trans. Math. Softw 33.

Levin, D. A., Peres, Y. & Wilmer, E. L. [2006] Markov chains and mixing times (American Mathemat-
ical Society), URL http://scholar.google.com/scholar.bib?q=info:3wf9IU94tyMJ:scholar.google.com/
&output=citation&hl=en&as_sdt=2000&ct=citation&cd=0.

Marsaglia, G. [1996] �Diehard: a battery of tests of randomness,� http://stat.fsu.edu/ geo/diehard.html .
Matsumoto, M. & Nishimura, T. [1998] �Mersenne twister: a 623-dimensionally equidistributed uni-

form pseudo-random number generator,� ACM Transactions on Modeling and Computer Simulation
(TOMACS) 8, 3�30.

Mitzenmacher, M. & Upfal, E. [2005] Probability and Computing (Cambridge University Press).
Robinson, J. P. & Cohn, M. [1981] �Counting sequences,� IEEE Trans. Comput. 30, 17�23, URL http:

//dl.acm.org/citation.cfm?id=1963620.1963622.

January 17, 2017 10:22 main

REFERENCES 21

Stojanovski, T. & Kocarev, L. [2001] �Chaos-based random number generators-part i: analysis [cryptog-
raphy],� Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on 48,
281�288.

Stojanovski, T., Pihl, J. & Kocarev, L. [2001] �Chaos-based random number generators. part ii: practical
realization,� Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on
48, 382�385.

Suparta, I. & Zanten, A. v. [2004] �Totally balanced and exponentially balanced gray codes,� Discrete
Analysis and Operation Research (Russia) 11, 81�98.

Wang, Q., Bahi, J., Guyeux, C. & Fang, X. [2010] �Randomness quality of CI chaotic generators. application
to internet security,� INTERNET'2010. The 2nd Int. Conf. on Evolving Internet (IEEE Computer
Society Press, Valencia, Spain), pp. 125�130, best Paper award.

