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RANDOM WALK IN A N-CUBE WITHOUT

HAMILTONIAN CYCLE TO CHAOTIC PSEUDORANDOM

NUMBER GENERATION: THEORETICAL AND

PRACTICAL CONSIDERATIONS
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Abstract. This paper is dedicated to the design of chaotic random

generators and extends previous works proposed by some of the au-

thors. We propose a theoretical framework proving both the chaotic

properties and that the limit distribution is uniform. A theoretical

bound on the stationary time is given and practical experiments show

that the generators successfully pass the classical statistical tests.
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1. Introduction

The exploitation of chaotic systems to generate pseudorandom sequences is an
hot topic [SPK01,SK01,CMZ09]. Such systems are fundamentally chosen due to
their unpredictable character and their sensitiveness to initial conditions. In most
cases, these generators simply consist in iterating a chaotic function like the logistic
map [SPK01,SK01] or the Arnold's one [CMZ09]. . . It thus remains to �nd optimal
parameters in such functions so that attractors are avoided, hoping by doing so
that the generated numbers follow a uniform distribution. In order to check the
quality of the produced outputs, it is usual to test the PRNGs (Pseudo-Random
Number Generators) with statistical batteries like the so-called DieHARD [Mar96],
NIST [BR10], or TestU01 [LS07] ones.

In its general understanding, chaos notion is often reduced to the strong sensi-
tiveness to the initial conditions (the well known �butter�y e�ect�): a continuous
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function k de�ned on a metrical space is said strongly sensitive to the initial con-
ditions if for each point x and each positive value ε, it is possible to �nd another
point y as close as possible to x, and an integer t such that the distance between the
t-th iterates of x and y, denoted by kt(x) and kt(y), are larger than ε. However,
in his de�nition of chaos, Devaney [Dev89] imposes to the chaotic function two
other properties called transitivity and regularity. Functions evoked above have
been studied according to these properties, and they have been proven as chaotic
on R. But nothing guarantees that such properties are preserved when iterating
the functions on �oating point numbers, which is the domain of interpretation of
real numbers R on machines.

To avoid this lack of chaos, we have previously presented some PRNGs that iter-
ate continuous functions Gf on a discrete domain {1, . . . , n}N×{0, 1}n, where f is a
Boolean function (i.e., f : {0, 1}n → {0, 1}n). These generators are CIPRNG1

f (u)

[GWB10,BCGR11], CIPRNG2
f (u, v) [WBGF10] and χ14Secrypt [CHG

+14a] where
CI means Chaotic Iterations. We have �rstly proven in [BCGR11] that, to es-
tablish the chaotic nature of algorithm CIPRNG1

f , it is necessary and su�cient
that the asynchronous iterations are strongly connected. We then have proven
that it is necessary and su�cient that the Markov matrix associated to this graph
is doubly stochastic, in order to have a uniform distribution of the outputs. We
have �nally established su�cient conditions to guarantee the �rst property of con-
nectivity. Among the generated functions, we thus have considered for further
investigations only the ones that satisfy the second property too. In [CHG+14a],
we have proposed an algorithmic method allowing to directly obtain a strongly
connected iteration graph having a doubly stochastic Markov matrix.

However, it cannot be directly deduced that χ14Secrypt is chaotic since we do
not output all the successive values of iterating Ff . This algorithm only displays a
subsequence xb.n of a whole chaotic sequence xn and it is indeed de�nitively false
that the chaos property is preserved for any subsequence of a chaotic sequence.
This article presents conditions to preserve this property.

An approach to generate a large class of chaotic functions has been presented
in [CHG+14a]. It is basically fourfold: �rst build a N-cube, next remove an Hamil-
tonian cycle, further add self-loop on each vertex and �nally, translate this into
a Boolean map. We are then left to check whether this approach proposes maps
with the required conditions for the chaos. The answer is indeed positive. The
pseudorandom number generation can thus be seen as a random walk in a N-cube
without a Hamiltonian cycle.

In the PRNG context, there remains to �nd which subsequence is theoretically
and practically su�cient to extract. A uniform distribution is indeed awaited and
this cannot be obtained in a walk in the hypercube with paths of short length b.
However, the higher is b the slower is the algorithm to generate pseudorandom
numbers. The time until the corresponding Markov chain is close to the uni-
form distribution is a metric that should be theoretically and practically studied.
Finally, the ability of the approach to face classical tests suite has to be evaluated.
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The remainder of this article is organized as follows. The next section is de-
voted to preliminaries, basic notations, and terminologies regarding Boolean map
iterations. Then, in Section 3, Devaney's de�nition of chaos is recalled while the
proofs of chaos of our most general PRNGs is provided. This is the �rst major
contribution. Section 4 shows how to generate functions with required proper-
ties making the PRNG chaotic. The next section (Sect. 5) de�nes the theoretical
framework to study the stopping-time, i.e., time until reaching a uniform distribu-
tion. This is the second major contribution. The Section 6 gives practical results
on evaluating the PRNG against the NIST suite. This research work ends by
a conclusion section, where the contribution is summarized and intended future
work is outlined.

2. PRELIMINARIES

In what follows, we consider the Boolean algebra on the set B = {0, 1} with
the classical operators of conjunction '.', of disjunction '+', of negation ' ', and of
disjunctive union ⊕.

Let us �rst introduce basic notations. Let N be a positive integer. The set
{1, 2, . . . ,N} of integers belonging between 1 and N is further denoted as J1,NK.
A Boolean map f is a function from BN to itself such that x = (x1, . . . , xN) maps
to f(x) = (f1(x), . . . , fN(x)). In what follows, for any �nite set X, |X| denotes its
cardinality and byc is the largest integer lower than y.

Functions are iterated as follows. At the tth iteration, only the st−th component
is said to be �iterated�, where s = (st)t∈N is a sequence of indices taken in J1;NK
called �strategy�. Formally, let Ff : BN × J1;NK to BN be de�ned by

Ff (x, i) = (x1, . . . , xi−1, fi(x), xi+1, . . . , xN).

Then, let x0 ∈ BN be an initial con�guration and s ∈ J1;NKN be a strategy, the
dynamics are described by the recurrence

xt+1 = Ff (xt, st). (1)

Let be given a Boolean map f . Its associated iteration graph Γ(f) is the directed
graph such that the set of vertices is BN, and for all x ∈ BN and i ∈ J1;NK, the
graph Γ(f) contains an arc from x to Ff (x, i). Each arc (x, Ff (x, i)) is labelled
with i.

Running Example. Let us consider for instance N = 3. Let f∗ : B3 → B3 be
de�ned by f∗(x1, x2, x3) = (x2⊕x3, x1x3 +x1x2, x1x3 +x1x2). The iteration graph
Γ(f∗) of this function is given in Figure 1.

Let us �nally recall the pseudorandom number generator χ14Secrypt [CHG
+14b]

formalized in Algorithm 1. It is based on random walks in Γ(f). More precisely, let
be given a Boolean map f : BN → BN, an input PRNG Random, an integer b that
corresponds to a number of iterations, and an initial con�guration x0. Starting
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Figure 1. Iteration Graph Γ(f∗) of the function f∗

from x0, the algorithm repeats b times a random choice of which edge to follow
and traverses this edge. The �nal con�guration is thus outputted.

Input: a function f , an iteration number b, an initial con�guration x0 (N bits)
Output: a con�guration x (N bits)

x← x0;

for i = 0, . . . , b− 1 do

s← Random(N);

x← Ff (x, s);

end

return x;

Algorithm 1: Pseudo Code of the χ14Secrypt PRNG

With all this material, we can study the chaos properties of these function. This
is the aims of the next section.

3. Proof Of Chaos

Let us us �rst recall the chaos theoretical context presented in [BCGR11]. In
this article, the space of interest is BN × J1;NKN and the iteration function Hf is
the map from BN × J1;NKN to itself de�ned by

Hf (x, s) = (Ff (x, s0), σ(s)).

In this de�nition, σ : J1;NKN −→ J1;NKN is a shift operation on sequences (i.e., a
function that removes the �rst element of the sequence) formally de�ned with

σ((uk)k∈N) = (uk+1)k∈N.
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We have proven [BCGR11, Theorem 1] that Hf is chaotic in BN × J1;NKN if
and only if Γ(f) is strongly connected. However, the corrolary which would say
that χ14Secrypt is chaotic cannot be directly deduced since we do not output all
the successive values of iterating Ff . Only a a few of them is concerned and any
subsequence of a chaotic sequence is not necessarily a chaotic sequence too. This
necessitates a rigorous proof, which is the aim of this section.

3.1. Devaney's Chaotic Dynamical Systems

Consider a topological space (X , τ) and a continuous function f : X → X .

De�nition 3.1. The function f is said to be topologically transitive if, for any
pair of open sets U, V ⊂ X , there exists k > 0 such that fk(U) ∩ V 6= ∅.

De�nition 3.2. An element x is a periodic point for f of period n ∈ N∗ if
fn(x) = x.

De�nition 3.3. f is said to be regular on (X , τ) if the set of periodic points for
f is dense in X : for any point x in X , any neighborhood of x contains at least one
periodic point (without necessarily the same period).

De�nition 3.4 (Devaney's formulation of chaos [Dev89]). The function f is said
to be chaotic on (X , τ) if f is regular and topologically transitive.

The chaos property is strongly linked to the notion of �sensitivity�, de�ned on
a metric space (X , d) by:

De�nition 3.5. The function f has sensitive dependence on initial conditions if
there exists δ > 0 such that, for any x ∈ X and any neighborhood V of x, there
exist y ∈ V and n > 0 such that d (fn(x), fn(y)) > δ.

The constant δ is called the constant of sensitivity of f .

Indeed, Banks et al. have proven in [BBCS92] that when f is chaotic and
(X , d) is a metric space, then f has the property of sensitive dependence on initial
conditions (this property was formerly an element of the de�nition of chaos).

3.2. A Metric Space for PRNG Iterations

Let us �rst introduce P ⊂ N a �nite nonempty set having the cardinality
p ∈ N∗. Intuitively, this is the set of authorized numbers of iterations. Denote by
p1, p2, . . . , pp the ordered elements of P: P = {p1, p2, . . . , pp} and p1 < p2 < . . . <
pp. In our algorithm, p is 1 and p1 is b.

The Algorithm 1 may be seen as b functional composition of Ff . However, it
can be generalized with pi, pi ∈ P, functional compositions of Ff . Thus, for any
pi ∈ P we introduce the function Ff,pi : BN × J1,NKpi → BN de�ned by

Ff,pi(x, (u
0, u1, . . . , upi−1)) 7→ Ff (. . . (Ff (Ff (x, u0), u1), . . .), upi−1).



6 TITLE WILL BE SET BY THE PUBLISHER

The considered space is XN,P = BN × SN,P , where SN,P = J1,NKN × PN. Each
element in this space is a pair where the �rst element is N-uple in BN, as in
the previous space. The second element is a pair ((uk)k∈N, (v

k)k∈N) of in�nite
sequences. The sequence (vk)k∈N de�nes how many iterations are executed at
time k between two outputs. The sequence (uk)k∈N de�nes which elements is
modi�ed.

Let us de�ne the shift function Σ for any element of SN,P .

Σ : SN,P −→ SN,P(
(uk)k∈N, (v

k)k∈N
)
7−→

(
σv

0 (
(uk)k∈N

)
, σ
(
(vk)k∈N

))
.

In other words, Σ receives two sequences u and v, and it operates v0 shifts on the
�rst sequence and a single shift on the second one. Let

Gf : XN,P −→ XN,P

(e, (u, v)) 7−→
(
Ff,v0

(
e, (u0, . . . , uv

0−1
)
,Σ(u, v)

)
.

(2)

Then the outputs (y0, y1, . . .) produced by the CIPRNG2
f (u, v) generator are the

�rst components of the iterations X0 = (x0, (u, v)) and ∀n ∈ N, Xn+1 = Gf (Xn)
on XN,P .

3.3. A metric on XN,P

We de�ne a distance d on XN,P as follows. Consider x = (e, s) and x̌ = (ě, š) in
XN,P = BN × SN,P , where s = (u, v) and š = (ǔ, v̌) are in SN,P = SJ1,NK × SP .

• e and ě are integers belonging in J0, 2N−1K. The Hamming distance on
their binary decomposition, that is, the number of dissimilar binary digits,
constitutes the integral part of d(X, X̌).
• The fractional part is constituted by the di�erences between v0 and v̌0,

followed by the di�erences between �nite sequences u0, u1, . . . , uv
0−1 and

ǔ0, ǔ1, . . . , ǔv̌
0−1, followed by di�erences between v1 and v̌1, followed by

the di�erences between uv
0

, uv
0+1, . . . , uv

1−1 and ǔv̌
0

, ǔv̌
0+1, . . . , ǔv̌

1−1,
etc. More precisely, let p = blog10 (maxP)c+ 1 and n = blog10 (N)c+ 1.
� The p �rst digits of d(x, x̌) is |v0− v̌0| written in decimal numeration
(and with p digits).

� The next n×max (P) digits aim at measuring how much u0, u1, . . . , uv
0−1

di�ers from ǔ0, ǔ1, . . . , ǔv̌
0−1. The n �rst digits are |u0 − ǔ0|. They

are followed by |u1 − ǔ1| written with n digits, etc.

∗ If v0 = v̌0, then the process is continued until |uv0−1 − ǔv̌0−1|
and the fractional part of d(X, X̌) is completed by 0's until
reaching p+ n×max (P) digits.

∗ If v0 < v̌0, then the max (P) blocs of n digits are |u0 − ǔ0|,
..., |uv0−1 − ǔv0−1|, ǔv0 (on n digits), ..., ǔv̌

0−1 (on n digits),
followed by 0's if required.
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∗ The case v0 > v̌0 is dealt similarly.
� The next p digits are |v1 − v̌1|, etc.

Running Example. Consider for instance that N = 13, P = {1, 2, 11} (so p =

3), and that s =

{
u = 6, 11, 5, ...
v = 1, 2, ...

while š =

{
ǔ = 6, 4 1, ...
v̌ = 2, 1, ...

.

So dSN,P (s, š) = 0.010004000000000000000000011005... Indeed, the p = 2 �rst

digits are 01, as |v0 − v̌0| = 1, and we use p digits to code this di�erence (P being
{1, 2, 11}, this di�erence can be equal to 10). We then take the v0 = 1 �rst terms
of u, each term being coded in n = 2 digits, that is, 06. As we can iterate at most
max (P) times, we must complete this value by some 0's in such a way that the
obtained result has n × max (P) = 22 digits, that is: 0600000000000000000000.
Similarly, the v̌0 = 2 �rst terms in ǔ are represented by 0604000000000000000000,
and the absolute value of their di�erence is equal to 0004000000000000000000.
These digits are concatenated to 01, and we start again with the remainder of the
sequences.

Running Example. Consider now that N = 9, and P = {2, 7}, and that

s =

{
u = 6, 7, 4, 2,...
v = 2, 2, ...

while š =

{
ǔ = 4, 9, 6, 3, 6, 6, 7, 9, 8, ...
v̌ = 7, 2, ...

So dSN,P (s, š) = 0.5173633305600000..., as |v0− v̌0| = 5, |4963667− 6700000| =
1736333, |v1 − v̌1| = 0, and |9800000− 4200000| = 5600000.

d can be more rigorously written as follows:

d(x, x̌) = dSN,P (s, š) + dBN(e, ě),

where:

• dBN is the Hamming distance,
• ∀s = (u, v), š = (ǔ, v̌) ∈ SN,P ,

dSN,P (s, š) =
∑∞
k=0

1

10(k+1)p+knmax (P)

(
|vk − v̌k|

+

∣∣∣∣∣∑vk−1
l=0

u
∑k−1
m=0 v

m+l

10(l+1)n
−
∑v̌k−1
l=0

ǔ
∑k−1
m=0 v̌

m+l

10(l+1)n

∣∣∣∣∣
)

Let us show that,

Proposition 3.6. d is a distance on XN,P .

Proof. dBN is the Hamming distance. We will prove that dSN,P is a distance too,
thus d will also be a distance, being the sum of two distances.

• Obviously, dSN,P (s, š) > 0, and if s = š, then dSN,P (s, š) = 0. Conversely,

if dSN,P (s, š) = 0, then ∀k ∈ N, vk = v̌k due to the de�nition of d. Then,
as digits between positions p + 1 and p + n are null and correspond to
|u0 − ǔ0|, we can conclude that u0 = ǔ0. An extension of this result to
the whole �rst n × max (P) bloc leads to ui = ǔi, ∀i 6 v0 = v̌0, and by
checking all the n×max (P) blocs, u = ǔ.
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• dSN,P is clearly symmetric (dSN,P (s, š) = dSN,P (š, s)).
• The triangle inequality is obtained because the absolute value satis�es it
too.

�

Before being able to study the topological behavior of the general chaotic iter-
ations, we must �rst establish that:

Proposition 3.7. For all f : BN −→ BN, the function Gf is continuous on (X , d).

Proof. We will show this result by using the sequential continuity. Consider a
sequence xn = (en, (un, vn)) ∈ XNN,P such that d(xn, x) −→ 0, for some x =

(e, (u, v)) ∈ XN,P . We will show that d (Gf (xn), Gf (x)) −→ 0. Remark that u and
v are sequences of sequences.

As d(xn, x) −→ 0, there exists n0 ∈ N such that d(xn, x) < 10−(p+nmax (P))

(its p + nmax (P) �rst digits are null). In particular, ∀n > n0, e
n = e, as the

Hamming distance between the integral parts of x and x̌ is 0. Similarly, due to the
nullity of the p+ nmax (P) �rst digits of d(xn, x), we can conclude that ∀n > n0,

(vn)0 = v0, and that ∀n > n0, (un)0 = u0, (un)1 = u1, ..., (un)v
0−1 = uv

0−1. This
implies that:

• Gf (xn)1 = Gf (x)1: they have the same Boolean vector as �rst coordinate.

• dSN,P (Σ(un, vn); Σ(u, v)) = 10p+nmax (P)dSN,P ((un, vn); (u, v)). As the right
part of the equality tends to 0, we can deduce that it is the case too for
the left part of the equality, and so Gf (xn)2 is convergent to Gf (x)2.

�

3.4. ΓP(f) as an extension of Γ(f)

Let P = {p1, p2, . . . , pp}. We de�ne the directed graph ΓP(f) as follows.

• Its vertices are the 2N elements of BN.

• Each vertex has

p∑
i=1

Npi arrows, namely all the p1, p2, . . . , pp tuples having

their elements in J1,NK.
• There is an arc labeled u0, . . . , upi−1, i ∈ J1, pK between vertices x and y
if and only if y = Ff,pi(x, (u0, . . . , upi−1)).

It is not hard to see that the graph Γ{1}(f) is Γ(f).

Running Example. Consider for instance N = 2, Let f0 : B2 −→ B2 be the
negation function, i.e., f0(x1, x2) = (x1, x2), and consider P = {2, 3}. The graphs
of iterations are given in Figure 2. The Figure 2a shows what happens when
displaying each iteration result. On the contrary, the Figure 2b explicits the
behaviors when always applying 2 or 3 modi�cation and next outputing results.
Notice that here, orientations of arcs are not necessary since the function f0 is
equal to its inverse f−1

0 .
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Figure 2. Iterating f0 : (x1, x2) 7→ (x1, x2)

3.5. Proofs of chaos

We will show that,

Proposition 3.8. ΓP(f) is strongly connected if and only if Gf is topologically
transitive on (XN,P , d).

Proof. Suppose that ΓP(f) is strongly connected. Let x = (e, (u, v)), x̌ = (ě, (ǔ, v̌)) ∈
XN,P and ε > 0. We will �nd a point y in the open ball B(x, ε) and n0 ∈ N such
that Gn0

f (y) = x̌: this strong transitivity will imply the transitivity property. We
can suppose that ε < 1 without loss of generality.

Let us denote by (E, (U, V )) the elements of y. As y must be in B(x, ε) and
ε < 1, E must be equal to e. Let k = blog10(ε)c+ 1. dSN,P ((u, v), (U, V )) must be
lower than ε, so the k �rst digits of the fractional part of dSN,P ((u, v), (U, V )) are

null. Let k1 the smallest integer such that, if V 0 = v0, ..., V k1 = vk1 , U0 = u0, ...,

U
∑k1
l=0 V

l−1 = u
∑k1
l=0 v

l−1. Then dSN,P ((u, v), (U, V )) < ε. In other words, any y of

the form (e, ((u0, ..., u
∑k1
l=0 v

l−1), (v0, ..., vk1)) is in B(x, ε).

Let y0 such a point and z = Gk1f (y0) = (e′, (u′, v′)). ΓP(f) being strongly

connected, there is a path between e′ and ě. Denote by a0, . . . , ak2 the edges
visited by this path. We denote by V k1 = |a0| (number of terms in the �nite
sequence a1), V

k1+1 = |a1|, ..., V k1+k2 = |ak2 |, and by Uk1 = a0
0, U

k1+1 = a1
0, ...,

Uk1+Vk1−1 = a
Vk1−1
0 , Uk1+Vk1 = a0

1, U
k1+Vk1+1 = a1

1,...

Let y = (e, ((u0, ..., u
∑k1
l=0 v

l−1, a0
0, ..., a

|a0|
0 , a0

1, ..., a
|a1|
1 , ..., a0

k2
, ..., a

|ak2 |
k2

,

ǔ0, ǔ1, ...), (v0, ..., vk1 , |a0|, ..., |ak2 |, v̌0, v̌1, ...))). So y ∈ B(x, ε) and Gk1+k2
f (y) = x̌.

Conversely, if ΓP(f) is not strongly connected, then there are 2 vertices e1 and
e2 such that there is no path between e1 and e2. That is, it is impossible to �nd
(u, v) ∈ SN,P and nN such that Gnf (e, (u, v))1 = e2. The open ball B(e2, 1/2)
cannot be reached from any neighborhood of e1, and thus Gf is not transitive. �
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We show now that,

Proposition 3.9. If ΓP(f) is strongly connected, then Gf is regular on (XN,P , d).

Proof. Let x = (e, (u, v)) ∈ XN,P and ε > 0. As in the proofs of Prop. 3.8, let
k1 ∈ N such that{

(e, ((u0, ..., uv
k1−1

, U0, U1, ...), (v0, ..., vk1 , V 0, V 1, ...)) |

∀i, j ∈ N, U i ∈ J1,NK, V j ∈ P
}
⊂ B(x, ε),

and y = Gk1f (e, (u, v)). ΓP(f) being strongly connected, there is at least a path
from the Boolean state y1 of y and e. Denote by a0, . . . , ak2 the edges of such a
path. Then the point:

(e, ((u0, ..., uv
k1−1

, a0
0, ..., a

|a0|
0 , a0

1, ..., a
|a1|
1 , ..., a0

k2 , ..., a
|ak2 |
k2

, u0, ..., uv
k1−1

,

a0
0, ..., a

|ak2 |
k2

...), (v0, ..., vk1 , |a0|, ..., |ak2 |, v0, ..., vk1 , |a0|, ..., |ak2 |, ...))
is a periodic point in the neighborhood B(x, ε) of x. �

Gf being topologically transitive and regular, we can thus conclude that

Theorem 3.10. The function Gf is chaotic on (XN,P , d) if and only if its iteration
graph ΓP(f) is strongly connected.

Corollary 3.11. The pseudorandom number generator χ14Secrypt is not chaotic
on (XN,{b}, d) for the negation function.

Proof. In this context, P is the singleton {b}. If b is even, any vertex e of Γ{b}(f0)
cannot reach its neighborhood and thus Γ{b}(f0) is not strongly connected. If b is
even, any vertex e of Γ{b}(f0) cannot reach itself and thus Γ{b}(f0) is not strongly
connected. �

The next section shows how to generate functions and a iteration number b such
that Γ{b} is strongly connected.

4. Functions with Strongly Connected Γ{b}(f)

First of all, let f : BN → BN. It has been shown [BCGR11, Theorem 4] that if
its iteration graph Γ(f) is strongly connected, then the output of χ14Secrypt follows
a law that tends to the uniform distribution if and only if its Markov matrix is a
doubly stochastic matrix.

In [CHG+14b, Section 4], we have presented an e�cient approach which gen-
erates function with strongly connected iteration graph Γ(f) and with doubly
stochastic Markov probability matrix.

Basically, let consider the N-cube. Let us next remove one Hamiltonian cycle
in this one. When an edge (x, y) is removed, an edge (x, x) is added.
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Running Example. For instance, the iteration graph Γ(f∗) (given in Figure 1) is
the 3-cube in which the Hamiltonian cycle 000, 100, 101, 001, 011, 111, 110, 010, 000
has been removed.

We �rst have proven the following result, which states that the N-cube without
one Hamiltonian cycle has the awaited property with regard to the connectivity.

Theorem 4.1. The iteration graph Γ(f) issued from the N-cube where an Hamil-
tonian cycle is removed is strongly connected.

Moreover, if all the transitions have the same probability ( 1
n ), we have proven

the following results:

Theorem 4.2. The Markov Matrix M resulting from the N-cube in which an
Hamiltonian cycle is removed, is doubly stochastic.

Let us consider now a N-cube where an Hamiltonian cycle is removed. Let f be
the corresponding function. The question which remains to solve is can we always
�nd b such that Γ{b}(f) is strongly connected.

The answer is indeed positive. We furtheremore have the following strongest
result.

Theorem 4.3. There exist b ∈ N such that Γ{b}(f) is complete.

Proof. There is an arc (x, y) in the graph Γ{b}(f) if and only if M b
xy is positive

where M is the Markov matrix of Γ(f). It has been shown in [BCGR11, Lemma
3] that M is regular. There exists thus b such there is an arc between any x and
y. �

Details on the construction of hamiltonian paths in the N-cube may be found
in [CHG+14b, Section 4].

5. Stopping Time

Let thus be given such kind of map. This article focuses on studying its iter-
ations according to the equation (1) with a given strategy. First of all, this can
be interpreted as walking into its iteration graph where the choice of the edge
to follow is decided by the strategy. Notice that the iteration graph is always a
subgraph of N-cube augmented with all the self-loop, i.e., all the edges (v, v) for
any v ∈ BN. Next, if we add probabilities on the transition graph, iterations can
be interpreted as Markov chains.

Running Example. Let us consider for instance the graph Γ(f) de�ned in Fig-

ure 1. and the probability function p de�ned on the set of edges as follows:

p(e)

{
= 2

3 if e = (v, v) with v ∈ B3,
= 1

6 otherwise.
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The matrix P of the Markov chain associated to the function f∗ and to its proba-
bility function p is

P =
1

6



4 1 1 0 0 0 0 0
1 4 0 0 0 1 0 0
0 0 4 1 0 0 1 0
0 1 1 4 0 0 0 0
1 0 0 0 4 0 1 0
0 0 0 0 1 4 0 1
0 0 0 0 1 0 4 1
0 0 0 1 0 1 0 4


This section considers functions f : BN → BN issued from an hypercube where

an Hamiltonian path has been removed. A speci�c random walk in this modi�ed
hypercube is �rst introduced. We further detail a theoretical study on the length
of the path which is su�cient to follow to get a uniform distribution. Notice that
for a general references on Markov chains see [LPW06] , and particularly Chapter 5
on stopping times.

First of all, let π, µ be two distributions on BN. The total variation distance
between π and µ is denoted ‖π − µ‖TV and is de�ned by

‖π − µ‖TV = max
A⊂BN

|π(A)− µ(A)|.

It is known that

‖π − µ‖TV =
1

2

∑
X∈BN

|π(X)− µ(X)|.

Moreover, if ν is a distribution on BN, one has

‖π − µ‖TV ≤ ‖π − ν‖TV + ‖ν − µ‖TV

Let P be the matrix of a Markov chain on BN. P (X, ·) is the distribution
induced by the X-th row of P . If the Markov chain induced by P has a stationary
distribution π, then we de�ne

d(t) = max
X∈BN

‖P t(X, ·)− π‖TV.

and

tmix(ε) = min{t | d(t) ≤ ε}.
One can prove that

tmix(ε) ≤ dlog2(ε−1)etmix(
1

4
)

Let (Xt)t∈N be a sequence of BN valued random variables. A N-valued random
variable τ is a stopping time for the sequence (Xi) if for each t there exists Bt ⊆
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(BN)t+1 such that {τ = t} = {(X0, X1, . . . , Xt) ∈ Bt}. In other words, the event
{τ = t} only depends on the values of (X0, X1, . . . , Xt), not on Xk with k > t.

Let (Xt)t∈N be a Markov chain and f(Xt−1, Zt) a random mapping represen-
tation of the Markov chain. A randomized stopping time for the Markov chain
is a stopping time for (Zt)t∈N. If the Markov chain is irreducible and has π as
stationary distribution, then a stationary time τ is a randomized stopping time
(possibly depending on the starting position X), such that the distribution of Xτ

is π:
PX(Xτ = Y ) = π(Y ).

A stopping time τ is a strong stationary time if Xτ is independent of τ .

Theorem 5.1. If τ is a strong stationary time, then d(t) ≤ maxX∈BN PX(τ > t).

Let E = {(X,Y ) | X ∈ BN, Y ∈ BN, X = Y or X ⊕ Y ∈ 0∗10∗}. In other
words, E is the set of all the edges in the classical N-cube. Let h be a function from
BN into J1,NK. Intuitively speaking h aims at memorizing for each node X ∈ BN

which edge is removed in the Hamiltonian cycle, i.e. which bit in J1,NK cannot be
switched.

We denote by Eh the set E \ {(X,Y ) | X ⊕ Y = 0N−h(X)10h(X)−1}. This is the
set of the modi�ed hypercube, i.e., the N-cube where the Hamiltonian cycle h has
been removed.

We de�ne the Markov matrix Ph for each line X and each column Y as follows: Ph(X,X) = 1
2 + 1

2N
Ph(X,Y ) = 0 if (X,Y ) /∈ Eh
Ph(X,Y ) = 1

2N if X 6= Y and (X,Y ) ∈ Eh
(3)

We denote by h : BN → BN the function such that for any X ∈ BN, (X,h(X)) ∈
E and X⊕h(X) = 0N−h(X)10h(X)−1. The function h is said square-free if for every
X ∈ BN, h(h(X)) 6= X.

Lemma 5.2. If h is bijective and square-free, then h(h
−1

(X)) 6= h(X).

Proof. Let h be bijective. Let k ∈ J1,NK s.t. h(h
−1

(X)) = k. Then (h
−1

(X), X)

belongs to E and h
−1

(X)⊕X = 0N−k10k−1. Let us suppose h(X) = h(h
−1

(X)).
In such a case, h(X) = k. By de�nition of h, (X,h(X)) ∈ E and X ⊕ h(X) =

0N−h(X)10h(X)−1 = 0N−k10k−1. Thus h(X) = h
−1

(X), which leads to h(h(X)) =
X. This contradicts the square-freeness of h. �

Let Z be a random variable that is uniformly distributed over J1,NK × B. For
X ∈ BN, we de�ne, with Z = (i, b),{

f(X,Z) = X ⊕ (0N−i10i−1) if b = 1 and i 6= h(X),
f(X,Z) = X otherwise.

The Markov chain is thus de�ned as

Xt = f(Xt−1, Zt)
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An integer ` ∈ J1,NK is said fair at time t if there exists 0 ≤ j < t such that
Zj+1 = (`, ·) and h(Xj) 6= `. In other words, there exist a date j before t where
the �rst element of the random variable Z is exactly l (i.e., l is the strategy at
date j) and where the con�guration Xj allows to traverse the edge l.

Let τstop be the �rst time all the elements of J1,NK are fair. The integer τstop

is a randomized stopping time for the Markov chain (Xt).

Lemma 5.3. The integer τstop is a strong stationary time.

Proof. Let τ` be the �rst time that ` is fair. The random variable Zτ` is of the
form (`, b) such that b = 1 with probability 1

2 and b = 0 with probability 1
2 . Since

h(Xτ`−1) 6= ` the value of the `-th bit of Xτ` is 0 or 1 with the same probability
( 1

2 ).
Moving next in the chain, at each step, the l-th bit is switched from 0 to 1 or

from 1 to 0 each time with the same probability. Therefore, for t ≥ τ`, the `-th
bit of Xt is 0 or 1 with the same probability, proving the lemma. �

Theorem 5.4. If h is bijective and square-free, then E[τstop] ≤ 8N2+4N ln(N+1).

For each X ∈ BN and ` ∈ J1,NK, let SX,` be the random variable that counts
the number of steps from X until we reach a con�guration where ` is fair. More
formally

SX,` = min{t ≥ 1 | h(Xt−1) 6= ` and Zt = (`, .) and X0 = X}.

Lemma 5.5. Let h is a square-free bijective function. Then for all X and all `,
the inequality E[SX,`] ≤ 8N2 is established.

Proof. For every X, every `, one has P(SX,`) ≤ 2) ≥ 1
4N2 . Let X0 = X. Indeed,

• if h(X) 6= `, then P(SX,` = 1) = 1
2N ≥

1
4N2 .

• otherwise, h(X) = `, then P(SX,` = 1) = 0. But in this case, intuitively,

it is possible to move from X to h
−1

(X) (with probability 1
2N ). And in

h
−1

(X) the l-th bit can be switched. More formally, since h is square-free,

h(X) = h(h(h
−1

(X))) 6= h
−1

(X). It follows that (X,h
−1

(X)) ∈ Eh. We

thus have P (X1 = h
−1

(X)) = 1
2N . Now, by Lemma 5.2, h(h

−1
(X)) 6=

h(X). Therefore P(Sx,` = 2 | X1 = h
−1

(X)) = 1
2N , proving that P(Sx,` ≤

2) ≥ 1
4N2 .

Therefore, P(SX,` ≥ 3) ≤ 1− 1
4N2 . By induction, one has, for every i, P(SX,` ≥

2i) ≤
(
1− 1

4N2

)i
. Moreover, since SX,` is positive, it is known [MU05, lemma 2.9],

that

E[SX,`] =

+∞∑
i=1

P(SX,` ≥ i).

Since P(SX,` ≥ i) ≥ P(SX,` ≥ i+ 1), one has

E[SX,`] =

+∞∑
i=1

P(SX,` ≥ i) ≤ P(SX,` ≥ 1) + P(SX,` ≥ 2) + 2

+∞∑
i=1

P(SX,` ≥ 2i).
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Consequently,

E[SX,`] ≤ 1 + 1 + 2

+∞∑
i=1

(
1− 1

4N2

)i
= 2 + 2(4N2 − 1) = 8N2,

which concludes the proof. �

Let τ ′stop be the time used to get all the bits but one fair.

Lemma 5.6. One has E[τ ′stop] ≤ 4N ln(N + 1).

Proof. This is a classical Coupon Collector's like problem. Let Wi be the random
variable counting the number of moves done in the Markov chain while we had

exactly i− 1 fair bits. One has τ ′stop =
∑N−1
i=1 Wi. But when we are at position X

with i− 1 fair bits, the probability of obtaining a new fair bit is either 1− i−1
N if

h(X) is fair, or 1− i−2
N if h(X) is not fair.

Therefore, P(Wi = k) ≤
(
i−1
N

)k−1 N−i+2
N . Consequently, we have P(Wi ≥ k) ≤(

i−1
N

)k−1 N−i+2
N−i+1 . It follows that E[Wi] =

∑+∞
k=1 P(Wi ≥ k) ≤ N N−i+2

(N−i+1)2 ≤
4N

N−i+2 .

It follows that E[Wi] ≤ 4N
N−i+2 . Therefore

E[τ ′stop] =

N−1∑
i=1

E[Wi] ≤ 4N
N−1∑
i=1

1

N− i+ 2
= 4N

N+1∑
i=3

1

i
.

But
∑N+1
i=1

1
i ≤ 1 + ln(N + 1). It follows that 1 + 1

2 +
∑N+1
i=3

1
i ≤ 1 + ln(N + 1).

Consequently, E[τ ′stop] ≤ 4N(− 1
2 + ln(N + 1)) ≤ 4N ln(N + 1). �

One can now prove Theorem 5.4.

Proof. Since τ ′stop is the time used to obtain N− 1 fair bits. Assume that the last
unfair bit is `. One has τstop = τ ′stop + SXτ ,`, and therefore E[τstop] = E[τ ′stop] +
E[SXτ ,`]. Therefore, Theorem 5.4 is a direct application of lemma 5.5 and 5.6. �

Notice that the calculus of the stationary time upper bound is obtained under
the following constraint: for each vertex in the N-cube there are one ongoing arc
and one outgoing arc that are removed. The calculus does not consider (balanced)
Hamiltonian cycles, which are more regular and more binding than this constraint.
In this later context, we claim that the upper bound for the stopping time should
be reduced.

6. Experiments

Let us �nally present the pseudorandom number generator χ15Rairo, which is
based on random walks in Γ{b}(f). More precisely, let be given a Boolean map

f : BN → BN, a PRNG Random, an integer b that corresponds to an iteration
number (i.e., the length of the walk), and an initial con�guration x0. Starting
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from x0, the algorithm repeats b times a random choice of which edge to follow,
and traverses this edge provided it is allowed to do so, i.e., when Random(1) is
not null. The �nal con�guration is thus outputted. This PRNG is formalized in
Algorithm 2.

Input: a function f , an iteration number b, an initial con�guration x0 (n
bits)

Output: a con�guration x (n bits)
x← x0;

for i = 0, . . . , b− 1 do

if Random(1) 6= 0 then

s← Random(n);

x← Ff (s, x);

end

end

return x;
Algorithm 2: Pseudo Code of the χ15Rairo PRNG

This PRNG is slightly di�erent from χ14Secrypt recalled in Algorithm 1. As
this latter, the length of the random walk of our algorithm is always constant
(and is equal to b). However, in the current version, we add the constraint that
the probability to execute the function Ff is equal to 0.5 since the output of
Random(1) is uniform in {0, 1}. This constraint is added to match the theoretical
framework of Sect. 5.

Notice that the chaos property of Gf given in Sect.3 only requires that the graph
Γ{b}(f) is strongly connected. Since the χ15Rairo algorithm only adds probability
constraints on existing edges, it preserves this property.

For each number N = 4, 5, 6, 7, 8 of bits, we have generated the functions ac-
cording to the method given in Sect. 4. For each N, we have then restricted this
evaluation to the function whose Markov Matrix (issued from Eq. (3)) has the
smallest practical mixing time. Such functions are given in Table 1. In this table,
let us consider for instance the function a© from B4 to B4 de�ned by the following
images : [13, 10, 9, 14, 3, 11, 1, 12, 15, 4, 7, 5, 2, 6, 0, 8]. In other words, the image of
3 (0011) by a© is 14 (1110): it is obtained as the binary value of the fourth element
in the second list (namely 14).

In this table the column that is labeled with b (respectively by E[τ ]) gives the
practical mixing time where the deviation to the standard distribution is lesser
than 10−6 (resp. the theoretical upper bound of stopping time as described in
Sect. 5).

Let us �rst discuss about results against the NIST test suite. In our experiments,
100 sequences (s = 100) of 1,000,000 bits are generated and tested. If the value
PT of any test is smaller than 0.0001, the sequences are considered to be not good
enough and the generator is unsuitable. Table 2 shows PT of sequences based
on discrete chaotic iterations using di�erent schemes. If there are at least two
statistical values in a test, this test is marked with an asterisk and the average
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Function f f(x), for x in (0, 1, 2, . . . , 2n − 1) N b E[τ ]
a© [13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8] 4 64 154
b© [29, 22, 25, 30, 19, 27, 24, 16, 21, 6, 5, 28, 23, 26, 1, 17, 5 78 236

31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 7, 20, 11, 18, 0, 4]
[55, 60, 45, 44, 58, 62, 61, 48, 53, 50, 52, 36, 59, 34, 33, 49,
15, 42, 47, 46, 35, 10, 57, 56, 7, 54, 39, 37, 51, 2, 1, 40, 63,

c© 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 6 88 335
12, 29, 8, 43, 14, 41, 0, 5, 38, 4, 6, 11, 3, 9, 32]

[111, 94, 93, 116, 122, 90, 125, 88, 115, 126, 119, 84, 123, 98,
81, 120, 109, 106, 105, 110, 99, 107, 104, 72, 71, 118, 117,

96, 103, 102, 113, 64, 79, 86, 95, 124, 83, 91, 121, 24, 85, 22,
d© 69, 20, 19, 114, 17, 112, 77, 76, 13, 108, 74, 10, 9, 73, 67, 66, 7 99 450

101, 100, 75, 82, 97, 0, 127, 54, 57, 62, 51, 59, 56, 48, 53, 38,
37, 60, 55, 58, 33, 49, 63, 44, 47, 40, 42, 46, 45, 41, 35, 34,
39, 52, 43, 50, 32, 36, 29, 28, 61, 92, 26, 18, 89, 25, 87, 30,
23, 4, 27, 2, 16, 80, 31, 78, 15, 14, 3, 11, 8, 12, 5, 70, 21,

68, 7, 6, 65, 1]
[223, 190, 249, 254, 187, 251, 233, 232, 183, 230, 247, 180, 227,
178, 240, 248, 237, 236, 253, 172, 203, 170, 201, 168, 229, 166,
165, 244, 163, 242, 241, 192, 215, 220, 205, 216, 218, 222, 221,
208, 213, 210, 212, 214, 219, 211, 217, 209, 239, 202, 207, 140,
139, 234, 193, 204, 135, 196, 199, 132, 194, 130, 225, 200, 159,
62, 185, 252, 59, 250, 169, 56, 191, 246, 245, 52, 243, 50, 176,
48, 173, 238, 189, 44, 235, 42, 137, 184, 231, 38, 37, 228, 35,
226, 177, 224, 151, 156, 141, 152, 154, 158, 157, 144, 149, 146,
148, 150, 155, 147, 153, 145, 175, 206, 143, 136, 11, 142, 129,

e© 8, 7, 198, 197, 4, 195, 2, 161, 160, 255, 124, 109, 108, 122, 8 110 582
126, 125, 112, 117, 114, 116, 100, 123, 98, 97, 113, 79, 106,
111, 110, 99, 74, 121, 120, 71, 118, 103, 101, 115, 66, 65,
104, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86,
80, 88, 77, 76, 93, 72, 107, 78, 105, 64, 69, 102, 68, 70, 75,
67, 73, 96, 55, 58, 45, 188, 51, 186, 61, 40, 119, 182, 181,
53, 179, 54, 33, 49, 15, 174, 47, 60, 171, 46, 57, 32, 167, 6,
36, 164, 43, 162, 1, 0, 63, 26, 25, 30, 19, 27, 17, 28, 31,
20, 23, 21, 18, 22, 16, 24, 13, 10, 29, 14, 3, 138, 41, 12,

39, 134, 133, 5, 131, 34, 9, 128]

Table 1. Functions with DSCC Matrix and smallest MT

value is computed to characterize the statistics. We can see in Table 2 that all
the rates are greater than 97/100, i.e., all the generators achieve to pass the NIST
battery of tests.

7. Conclusion

This work has assumed a Boolean map f which is embedded into a discrete-time
dynamical system Gf . This one is supposed to be iterated a �xed number p1 or
p2,. . . , or p of times before its output is considered. This work has �rst shown
that iterations of Gf are chaotic if and only if its iteration graph ΓP(f) is strongly
connected where P is {p1, . . . , p}. Any PRNG, which iterates Gf as above satis�es
in some cases the property of chaos.

We then have shown that a previously presented approach can be directly ap-
plied here to generate function f with strongly connected ΓP(f). The iterated
map inside the generator is built by �rst removing from a N-cube an Hamiltonian
path and next adding a self loop to each vertex. The PRNG can thus be seen



18 TITLE WILL BE SET BY THE PUBLISHER

Method a© b© c© d© e©

Frequency (Monobit) 0.851 (0.98) 0.719 (0.99) 0.699 (0.99) 0.514 (1.0) 0.798 (0.99)

Frequency (Monobit) 0.851 (0.98) 0.719 (0.99) 0.699 (0.99) 0.514 (1.0) 0.798 (0.99)

Frequency within a Block 0.262 (0.98) 0.699 (0.98) 0.867 (0.99) 0.145 (1.0) 0.455 (0.99)

Cumulative Sums (Cusum) * 0.301 (0.98) 0.521 (0.99) 0.688 (0.99) 0.888 (1.0) 0.598 (1.0)

Runs 0.224 (0.97) 0.383 (0.97) 0.108 (0.96) 0.213 (0.99) 0.616 (0.99)

Longest Run of 1s 0.383 (1.0) 0.474 (1.0) 0.983 (0.99) 0.699 (0.98) 0.897 (0.96)

Binary Matrix Rank 0.213 (1.0) 0.867 (0.99) 0.494 (0.98) 0.162 (0.99) 0.924 (0.99)

Disc. Fourier Transf. (Spect.) 0.474 (1.0) 0.739 (0.99) 0.012 (1.0) 0.678 (0.98) 0.437 (0.99)

Unoverlapping Templ. Match.* 0.505 (0.990) 0.521 (0.990) 0.510 (0.989) 0.511 (0.990) 0.499 (0.990)

Overlapping Temp. Match. 0.574 (0.98) 0.304 (0.99) 0.437 (0.97) 0.759 (0.98) 0.275 (0.99)

Maurer's Universal Statistical 0.759 (0.96) 0.699 (0.97) 0.191 (0.98) 0.699 (1.0) 0.798 (0.97)

Approximate Entropy (m=10) 0.759 (0.99) 0.162 (0.99) 0.867 (0.99) 0.534 (1.0) 0.616 (0.99)

Random Excursions * 0.666 (0.994) 0.410 (0.962) 0.287 (0.998) 0.365 (0.994) 0.480 (0.985)

Random Excursions Variant * 0.337 (0.988) 0.519 (0.984) 0.549 (0.994) 0.225 (0.995) 0.533 (0.993)

Serial* (m=10) 0.630 (0.99) 0.529 (0.99) 0.460 (0.99) 0.302 (0.995) 0.360 (0.985)

Linear Complexity 0.719 (1.0) 0.739 (0.99) 0.759 (0.98) 0.122 (0.97) 0.514 (0.99)

Table 2. NIST SP 800-22 test results (PT )

as a random walks of length in P into N this new cube. We furthermore have
exhibit a bound on the number of iterations that are su�cient to obtain a uniform
distribution of the output. Finally, experiments through the NIST battery have
shown that the statistical properties are almost established for N = 4, 5, 6, 7, 8.

In future work, we intend to understand the link between statistical tests and
the properties of chaos for the associated iterations. By doing so, relations between
desired statistically unbiased behaviors and topological properties will be under-
stood, leading to better choices in iteration functions. Conditions allowing the
reduction of the stopping-time will be investigated too, while other modi�cations
of the hypercube will be regarded in order to enlarge the set of known chaotic and
random iterations.
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