1 Mathematical Backgroung

Let 7, p be two distribution on a same set 2. The total variation distance between 7 and p is
denoted |7 — p||Tv and is defined by

lm— ullrv = max |T(A) — p(A)|.

It is known that

I~ pley = 5 3 Ie) -
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Moreover, if v is a distribution on €2, one has

|7 = pllov < |l7 = v|lov + [|[v — pllrv

Let P be the matrix of a markov chain on . P(z,-) is the distribution induced by the z-th
row of P. If the markov chain induced by P has a stationary distribution 7, then we define

— t .) —
(t) = max||P'(z, ) = v,
and

tmix(€) = min{t | d(t) < e}.
One can prove that

1

tmix (€) < [loga(e™") Ttmix(7)

Let (Xi)ten be a sequence of  valued random variables. A N-valued random variable 7 is a
stopping time for the sequence (X;) if for each ¢ there exists B; C w'*! such that {tau = t} =
{(Xo,X1,...,Xt) € B}

Let (X¢)ten be a markov chain and f(X;_1, Z;) a random mapping representation of the markov
chain. A randomized stopping timne for the markov chain is a stopping time for (Z;);en. It he markov
chain is irreductible and has 7 as stationary distribution, then a stationay time 7 is a randomized
stopping time (possibily depending on the starting position x), such that the distribution of X is
I

Proposition 1 If 7 is a strong stationary time, then d(t) < max,ecq P (7 > t).

2 Random walk on the modified Hypercube

Let Q = {0, 1} be the set of words of length N. Let E = {(2,y) |2 € QyeQ, s =yorx Py €
0*10*}. Let h be a function from 2 into {1,..., N}.
We denote by Ej, the set E\ {(z,y) | = @ y = ON—"@)10M=) =11 We define the matrix P, has

follows: )
P(z,y) q if (z,y) ¢ En
Ph( ) 5+ 3§
Pp(z,2) = 5% otherwise

We denote by h the function from  into w defined by z@®h(z) = 0V~ 10**)~1 The function
h is said square-free if for every = € E, h(h(x)) # .

Lemma 2 If h is bijective and square-free, then h(h ( )) # h(x).



PROOF.

a

Let Z be a random variable over {1,..., N} x {0,1} uniformaly distributed. For X € Q, we
define, with Z = (i, z),

(X, 2)=X otherwise.

3 Stopping time

An integer ¢ € {1,..., N} is said fair at time ¢ if there exists 0 < j < ¢ such that Z; = (¢,-) and
h(X;) # L.

Let Tgop be the first time all the elements of {1,..., N} are fair. The integer 7yop is a random-
ized stopping time for the markov chain (X3).

Lemma 3 The integer Tsop 45 a strong stationnary time.

PROOF. Let 7 be the first time that ¢ is fair. The random variable Z,,_; is of the form (¢, )
with § € {0,1} and § = 1 with probability % and 6 = 0 with probability % Since h(X,,—1) # £
the value of the ¢-th bit of X, is §. Moving next in the chain, at each step, the I-th bit is switch
from 0 to 1 or from 1 to 0 each time with the same probability. Therefore, for t > 74, the ¢-th bit
of X; is 0 or 1 with the same probability, proving the lemma. )

Proposition 4 If h is bijective and square-free, then E[Tsop] < 8N2 + NIn(N + 1).

For each z € Q and ¢ € {1,...,N}, let S, ¢ be the random variable counting the number of
steps done until reaching from x a state where ¢ is fair. More formaly

Sge =min{m > 1| h(X,,) # ¢ and Z,,, = £ and Xy = x}.

We denote by
)\h — max Sz’g.
z,l

Lemma 5 If h is a square-free bijective function, then one has E[\;] < 8N2.

Proor. For every X every ¢, one has P(Sx, < 2) > 1+=. Let Xo = X. Indeed, if h(X) # ¢,
then P(Sx, = 1) = 55 > 1+=. If h(X) = ¢, then P(Sx, = 1) = 0. But in this case, intutively,
it is possible to move from X to h 1(X) (with probability 2N) And in Eil(X) the I-th bit is
switchable. More fromaly, since h is square-free, h(z) = h(h(h ( ) # h 1( X). It follows that
(X,h (X)) € Eyp. Thefore P(X; = h (X)) = z&. Now, by Lemma 2, (A~ (X)) # h(X).
Therefore P(S, =2 | X; = Eil(X)) = 5%, proving that P(S, ¢ < 2) > i=.

Therefore, P(S;¢ > 3) < 1 — ﬁ. By induction, one has, for every i, P(S,, > 2i +1) <
(1 — 43=)". Moreover, since Sx ¢ is positive, it is known [?, lemma 2.9], that

E[Sx,] = Z]P’ Sx.e>1).

Since P(Sx ¢ > 1) > P(Sx,¢ > i+ 1), one has

+oo +o00
E[Sx =) P(Sxe>i) <P(Sxe>1)+P(Sxe>2)+2) P(Shs > 2i).
=1 =1



Consequently,

“+oco 7
1
E[S,/]<1+1+2 1——— ) =24 24N?%—-1)=_8N?
[See] <141+ Z;( 4N2> +2( ) = 8N2,

which concludes the proof. |

Let 7/

stop De the first time that there are exactly NV — 1 fair elements.

Lemma 6 One has E[7},,] < NIn(N +1).

Proor. This is a classical Coupon Collector’s like problem. Let W; be the random variable
counting the number of moves done in the markov chain while we had exactly ¢ — 1 fair bits. One

has 7/, = Z 'W;. But when we are at p051t10n x w1th z — 1 fair bits, the probability of
obtaining a new fair bit is either 1 — 2 if h(z) i (x) is not fair. It follows that
EW;] < N—Lz-s-z Therefore
N—1 N+1y
o = X B <N Y 5 =3
i=1 i

But SN 1 < 1+In(N +1). It follows that 1 + 4 + 375" 1 < 1+ 1In(N + 1). Consequently,

Elr, < N(—%4+In(N +1)) < NIn(N +1). O

stop]

One can now prove Proposition 4.
PRrROOF. One has Tgop < Tstop + Ap. Therefore, Proposition 4 is a direct application of lemma 5

and 6. O



