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RANDOM WALK IN A N-CUBE WITHOUT

HAMILTONIAN CYCLE TO CHAOTIC PSEUDORANDOM

NUMBER GENERATION: THEORETICAL AND

PRACTICAL CONSIDERATIONS
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Abstract. This paper is dedicated to the design of chaotic random

generators and extends previous works proposed by some of the au-

thors. We propose a theoretical framework proving both the chaotic

properties and that the limit distribution is uniform. A theoretical

bound on the stationary time is given and practical experiments show

that the generators successfully pass the classical statistical tests.
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1. Introduction

The exploitation of chaotic systems to generate pseudorandom sequences is an
hot topic [SPK01,SK01,CMZ09]. Such systems are fundamentally chosen due to
their unpredictable character and their sensitiveness to initial conditions. In most
cases, these generators simply consist in iterating a chaotic function like the logistic
map [SPK01,SK01] or the Arnold's one [CMZ09]. . . It thus remains to �nd optimal
parameters in such functions so that attractors are avoided, hoping by doing so
that the generated numbers follow a uniform distribution. In order to check the
quality of the produced outputs, it is usual to test the PRNGs (Pseudo-Random
Number Generators) with statistical batteries like the so-called DieHARD [Mar96],
NIST [BR10], or TestU01 [LS07] ones.
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In its general understanding, chaos notion is often reduced to the strong sensi-
tiveness to the initial conditions (the well known �butter�y e�ect�): a continuous
function k de�ned on a metrical space is said strongly sensitive to the initial con-
ditions if for each point x and each positive value ε, it is possible to �nd another
point y as close as possible to x, and an integer t such that the distance between the
t-th iterates of x and y, denoted by kt(x) and kt(y), are larger than ε. However,
in his de�nition of chaos, Devaney [Dev89] imposes to the chaotic function two
other properties called transitivity and regularity. Functions evoked above have
been studied according to these properties, and they have been proven as chaotic
on R. But nothing guarantees that such properties are preserved when iterating
the functions on �oating point numbers, which is the domain of interpretation of
real numbers R on machines.

To avoid this lack of chaos, we have previously presented some PRNGs that iter-
ate continuous functions Gf on a discrete domain {1, . . . , n}N×{0, 1}n, where f is a
Boolean function (i.e., f : {0, 1}N → {0, 1}N). These generators are CIPRNG1

f (u)

[GWB10, BCGR11], CIPRNG2
f (u, v) [WBGF10] and χ14Secrypt [CHG

+14] where
CI means Chaotic Iterations. We have �rstly proven in [BCGR11] that, to estab-
lish the chaotic nature of algorithm CIPRNG1

f , it is necessary and su�cient that
the asynchronous iterations are strongly connected. We then have proven that it is
necessary and su�cient that the Markov matrix associated to this graph is doubly
stochastic, in order to have a uniform distribution of the outputs. We have �nally
established su�cient conditions to guarantee the �rst property of connectivity.
Among the generated functions, we thus have considered for further investigations
only the ones that satisfy the second property too.

However, it cannot be directly deduced that χ14Secrypt is chaotic since we do
not output all the successive values of iterating Gf . This algorithm only displays
a subsequence xb.n of a whole chaotic sequence xn and it is indeed not correct that
the chaos property is preserved for any subsequence of a chaotic sequence. This
article presents conditions to preserve this property.

Finding a Boolean function which provides a strongly connected iteration graph
having a doubly stochastic Markov matrix is however not an easy task. We have
�rstly proposed in [BCGR11] a generate-and-test based approach that solves this
issue. However, this one was not e�cient enough. Thus, a second approach has
been further presented in [CHG+14] by remarking that a N-cube where an Hamil-
tonian cycle (or equivalently a Gray code) has been removed is strongly connected
and has a doubly stochastic Markov matrix.

However, the removed Hamiltonian cycle has a great in�uence in the quality
of the output. For instance, if this one one is not balanced (i.e., the number
of changes in di�erent bits are completely di�erent), some bit would be hard to
switch. This article shows an e�ective algorithm to provide functions issued from
removing balanced Hamiltonian cycle in the N-cube.

The length b of the walk to reach a distribution close to the uniform one would
be dramatically long. This article theoretically and practically studies the length b
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until the corresponding Markov chain is close to the uniform distribution. Finally,
the ability of the approach to face classical tests suite is evaluated.

The remainder of this article is organized as follows. The next section is de-
voted to preliminaries, basic notations, and terminologies regarding Boolean map
iterations. Then, in Section 3, Devaney's de�nition of chaos is recalled while the
proofs of chaos of our most general PRNGs is provided. This is the �rst major
contribution. Section 4 recalls a general scheme to obtain functions with awaited
behavior. Main theorems are recalled to make the document self-content. The next
section (Sect. 5) presents an algorithm that implements this scheme and proves it
always produces a solution. This is the second major contribution The later sec-
tion (Sect. 6) de�nes the theoretical framework to study the mixing-time, i.e., time
until reaching a uniform distribution. It proves that this one is at worth quadratic
in the number of elements. Experiments show that the bound is practically largely
much lower. This is the third major contribution. The Section 7 gives practical
results on evaluating the PRNG against the NIST suite. This research work ends
by a conclusion section, where the contribution is summarized and intended future
work is outlined.

2. Preliminaries

In what follows, we consider the Boolean algebra on the set B = {0, 1} with
the classical operators of conjunction '.', of disjunction '+', of negation ' ', and of
disjunctive union ⊕.

Let us �rst introduce basic notations. Let N be a positive integer. The set
{1, 2, . . . ,N} of integers belonging between 1 and N is further denoted as J1,NK.
A Boolean map f is a function from BN to itself such that x = (x1, . . . , xN) maps
to f(x) = (f1(x), . . . , fN(x)). In what follows, for any �nite set X, |X| denotes its
cardinality and byc is the largest integer lower than y.

Functions are iterated as follows. At the tth iteration, only the st−th component
is said to be �iterated�, where s = (st)t∈N is a sequence of indices taken in J1;NK
called �strategy�. Formally, let Ff : BN × J1;NK to BN be de�ned by

Ff (x, i) = (x1, . . . , xi−1, fi(x), xi+1, . . . , xN).

Then, let x0 ∈ BN be an initial con�guration and s ∈ J1;NKN be a strategy, the
dynamics are described by the recurrence

xt+1 = Ff (xt, st). (1)

Let be given a Boolean map f . Its associated iteration graph Γ(f) is the directed
graph such that the set of vertices is BN, and for all x ∈ BN and i ∈ J1;NK, the
graph Γ(f) contains an arc from x to Ff (x, i). Each arc (x, Ff (x, i)) is labelled
with i.



4 TITLE WILL BE SET BY THE PUBLISHER

Running Example. Let us consider for instance N = 3. Let f∗ : B3 → B3 be
de�ned by f∗(x1, x2, x3) = (x2⊕x3, x1x3 +x1x2, x1x3 +x1x2). The iteration graph
Γ(f∗) of this function is given in Figure 1.
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Figure 1. Iteration Graph Γ(f∗) of the function f∗

Let us �nally recall the pseudorandom number generator χ14Secrypt [CHG
+14]

formalized in Algorithm 1. It is based on random walks in Γ(f). More precisely, let
be given a Boolean map f : BN → BN, an input PRNG Random, an integer b that
corresponds to a number of iterations, and an initial con�guration x0. Starting
from x0, the algorithm repeats b times a random choice of which edge to follow
and traverses this edge. The �nal con�guration is thus outputted.

Input: a function f , an iteration number b, an initial con�guration x0 (N bits)
Output: a con�guration x (N bits)

x← x0;

for i = 0, . . . , b− 1 do

s← Random(N);

x← Ff (x, s);

end

return x;

Algorithm 1: Pseudo Code of the χ14Secrypt PRNG

Based on this setup, we can study the chaos properties of these function. This
is the aims of the next section.

3. Proof Of Chaos

Let us us �rst recall the chaos theoretical context presented in [BCGR11]. In
this article, the space of interest is BN × J1;NKN and the iteration function Hf is
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the map from BN × J1;NKN to itself de�ned by

Hf (x, s) = (Ff (x, s0), σ(s)).

In this de�nition, σ : J1;NKN −→ J1;NKN is a shift operation on sequences (i.e., a
function that removes the �rst element of the sequence) formally de�ned with

σ((uk)k∈N) = (uk+1)k∈N.

We have proven [BCGR11, Theorem 1] that Hf is chaotic in BN × J1;NKN if
and only if Γ(f) is strongly connected. However, the corrolary which would say
that χ14Secrypt is chaotic cannot be directly deduced since we do not output all
the successive values of iterating Ff . Only a a few of them is concerned and any
subsequence of a chaotic sequence is not necessarily a chaotic sequence too. This
necessitates a rigorous proof, which is the aim of this section.

3.1. Devaney's Chaotic Dynamical Systems

Consider a topological space (X , τ) and a continuous function f : X → X .

De�nition 3.1. The function f is said to be topologically transitive if, for any
pair of open sets U, V ⊂ X , there exists k > 0 such that fk(U) ∩ V 6= ∅.

De�nition 3.2. An element x is a periodic point for f of period n ∈ N∗ if
fn(x) = x.

De�nition 3.3. f is said to be regular on (X , τ) if the set of periodic points for
f is dense in X : for any point x in X , any neighborhood of x contains at least one
periodic point (without necessarily the same period).

De�nition 3.4 (Devaney's formulation of chaos [Dev89]). The function f is said
to be chaotic on (X , τ) if f is regular and topologically transitive.

The chaos property is strongly linked to the notion of �sensitivity�, de�ned on
a metric space (X , d) by:

De�nition 3.5. The function f has sensitive dependence on initial conditions if
there exists δ > 0 such that, for any x ∈ X and any neighborhood V of x, there
exist y ∈ V and n > 0 such that d (fn(x), fn(y)) > δ.

The constant δ is called the constant of sensitivity of f .

Indeed, Banks et al. have proven in [BBCS92] that when f is chaotic and
(X , d) is a metric space, then f has the property of sensitive dependence on initial
conditions (this property was formerly an element of the de�nition of chaos).

3.2. A Metric Space for PRNG Iterations

Let us �rst introduce P ⊂ N a �nite nonempty set having the cardinality
p ∈ N∗. Intuitively, this is the set of authorized numbers of iterations. Denote by
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p1, p2, . . . , pp the ordered elements of P: P = {p1, p2, . . . , pp} and p1 < p2 < . . . <
pp. In our algorithm, p is 1 and p1 is b.

The Algorithm 1 may be seen as b functional composition of Ff . However, it
can be generalized with pi, pi ∈ P, functional compositions of Ff . Thus, for any
pi ∈ P we introduce the function Ff,pi : BN × J1,NKpi → BN de�ned by

Ff,pi(x, (u
0, u1, . . . , upi−1)) 7→ Ff (. . . (Ff (Ff (x, u0), u1), . . .), upi−1).

The considered space is XN,P = BN × SN,P , where SN,P = J1,NKN × PN. Each
element in this space is a pair where the �rst element is N-uple in BN, as in
the previous space. The second element is a pair ((uk)k∈N, (v

k)k∈N) of in�nite
sequences. The sequence (vk)k∈N de�nes how many iterations are executed at
time k between two outputs. The sequence (uk)k∈N de�nes which elements is
modi�ed.

Let us de�ne the shift function Σ for any element of SN,P .

Σ : SN,P −→ SN,P(
(uk)k∈N, (v

k)k∈N
)
7−→

(
σv

0 (
(uk)k∈N

)
, σ
(
(vk)k∈N

))
.

In other words, Σ receives two sequences u and v, and it operates v0 shifts on the
�rst sequence and a single shift on the second one. Let

Gf : XN,P −→ XN,P

(e, (u, v)) 7−→
(
Ff,v0

(
e, (u0, . . . , uv

0−1
)
,Σ(u, v)

)
.

(2)

Then the outputs (y0, y1, . . .) produced by the CIPRNG2
f (u, v) generator are the

�rst components of the iterations X0 = (x0, (u, v)) and ∀n ∈ N, Xn+1 = Gf (Xn)
on XN,P .

3.3. A metric on XN,P

We de�ne a distance d on XN,P as follows. Consider x = (e, s) and x̌ = (ě, š) in
XN,P = BN × SN,P , where s = (u, v) and š = (ǔ, v̌) are in SN,P = SJ1,NK × SP .

• e and ě are integers belonging in J0, 2N−1K. The Hamming distance on
their binary decomposition, that is, the number of dissimilar binary digits,
constitutes the integral part of d(X, X̌).
• The fractional part is constituted by the di�erences between v0 and v̌0,

followed by the di�erences between �nite sequences u0, u1, . . . , uv
0−1 and

ǔ0, ǔ1, . . . , ǔv̌
0−1, followed by di�erences between v1 and v̌1, followed by

the di�erences between uv
0

, uv
0+1, . . . , uv

1−1 and ǔv̌
0

, ǔv̌
0+1, . . . , ǔv̌

1−1,
etc. More precisely, let p = blog10 (maxP)c+ 1 and n = blog10 (N)c+ 1.
� The p �rst digits of d(x, x̌) is |v0− v̌0| written in decimal numeration
(and with p digits).
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� The next n×max (P) digits aim at measuring how much u0, u1, . . . , uv
0−1

di�ers from ǔ0, ǔ1, . . . , ǔv̌
0−1. The n �rst digits are |u0 − ǔ0|. They

are followed by |u1 − ǔ1| written with n digits, etc.

∗ If v0 = v̌0, then the process is continued until |uv0−1 − ǔv̌0−1|
and the fractional part of d(X, X̌) is completed by 0's until
reaching p+ n×max (P) digits.

∗ If v0 < v̌0, then the max (P) blocs of n digits are |u0 − ǔ0|,
..., |uv0−1 − ǔv0−1|, ǔv0 (on n digits), ..., ǔv̌

0−1 (on n digits),
followed by 0's if required.

∗ The case v0 > v̌0 is dealt similarly.
� The next p digits are |v1 − v̌1|, etc.

Running Example. Consider for instance that N = 13, P = {1, 2, 11} (so p =

3), and that s =

{
u = 6, 11, 5, ...
v = 1, 2, ...

while š =

{
ǔ = 6, 4 1, ...
v̌ = 2, 1, ...

.

So dSN,P (s, š) = 0.010004000000000000000000011005... Indeed, the p = 2 �rst

digits are 01, as |v0 − v̌0| = 1, and we use p digits to code this di�erence (P being
{1, 2, 11}, this di�erence can be equal to 10). We then take the v0 = 1 �rst terms
of u, each term being coded in n = 2 digits, that is, 06. As we can iterate at most
max (P) times, we must complete this value by some 0's in such a way that the
obtained result has n × max (P) = 22 digits, that is: 0600000000000000000000.
Similarly, the v̌0 = 2 �rst terms in ǔ are represented by 0604000000000000000000,
and the absolute value of their di�erence is equal to 0004000000000000000000.
These digits are concatenated to 01, and we start again with the remainder of the
sequences.

Running Example. Consider now that N = 9, and P = {2, 7}, and that

s =

{
u = 6, 7, 4, 2,...
v = 2, 2, ...

while š =

{
ǔ = 4, 9, 6, 3, 6, 6, 7, 9, 8, ...
v̌ = 7, 2, ...

So dSN,P (s, š) = 0.5173633305600000..., as |v0− v̌0| = 5, |4963667− 6700000| =
1736333, |v1 − v̌1| = 0, and |9800000− 4200000| = 5600000.

d can be more rigorously written as follows:

d(x, x̌) = dSN,P (s, š) + dBN(e, ě),

where:

• dBN is the Hamming distance,
• ∀s = (u, v), š = (ǔ, v̌) ∈ SN,P ,

dSN,P (s, š) =
∑∞
k=0

1

10(k+1)p+knmax (P)

(
|vk − v̌k|

+

∣∣∣∣∣∑vk−1
l=0

u
∑k−1
m=0 v

m+l

10(l+1)n
−
∑v̌k−1
l=0

ǔ
∑k−1
m=0 v̌

m+l

10(l+1)n

∣∣∣∣∣
)

Let us show that,
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Proposition 3.6. d is a distance on XN,P .

Proof. dBN is the Hamming distance. We will prove that dSN,P is a distance too,
thus d will also be a distance, being the sum of two distances.

• Obviously, dSN,P (s, š) > 0, and if s = š, then dSN,P (s, š) = 0. Conversely,

if dSN,P (s, š) = 0, then ∀k ∈ N, vk = v̌k due to the de�nition of d. Then,
as digits between positions p + 1 and p + n are null and correspond to
|u0 − ǔ0|, we can conclude that u0 = ǔ0. An extension of this result to
the whole �rst n × max (P) bloc leads to ui = ǔi, ∀i 6 v0 = v̌0, and by
checking all the n×max (P) blocs, u = ǔ.

• dSN,P is clearly symmetric (dSN,P (s, š) = dSN,P (š, s)).
• The triangle inequality is obtained because the absolute value satis�es it
too.

�

Before being able to study the topological behavior of the general chaotic iter-
ations, we must �rst establish that:

Proposition 3.7. For all f : BN −→ BN, the function Gf is continuous on (X , d).

Proof. We will show this result by using the sequential continuity. Consider a
sequence xn = (en, (un, vn)) ∈ XNN,P such that d(xn, x) −→ 0, for some x =

(e, (u, v)) ∈ XN,P . We will show that d (Gf (xn), Gf (x)) −→ 0. Remark that u and
v are sequences of sequences.

As d(xn, x) −→ 0, there exists n0 ∈ N such that d(xn, x) < 10−(p+nmax (P))

(its p + nmax (P) �rst digits are null). In particular, ∀n > n0, e
n = e, as the

Hamming distance between the integral parts of x and x̌ is 0. Similarly, due to the
nullity of the p+ nmax (P) �rst digits of d(xn, x), we can conclude that ∀n > n0,

(vn)0 = v0, and that ∀n > n0, (un)0 = u0, (un)1 = u1, ..., (un)v
0−1 = uv

0−1. This
implies that:

• Gf (xn)1 = Gf (x)1: they have the same Boolean vector as �rst coordinate.

• dSN,P (Σ(un, vn); Σ(u, v)) = 10p+nmax (P)dSN,P ((un, vn); (u, v)). As the right
part of the equality tends to 0, we can deduce that it is the case too for
the left part of the equality, and so Gf (xn)2 is convergent to Gf (x)2.

�

3.4. ΓP(f) as an extension of Γ(f)

Let P = {p1, p2, . . . , pp}. We de�ne the directed graph ΓP(f) as follows.

• Its vertices are the 2N elements of BN.

• Each vertex has

p∑
i=1

Npi arrows, namely all the p1, p2, . . . , pp tuples having

their elements in J1,NK.
• There is an arc labeled u0, . . . , upi−1, i ∈ J1, pK between vertices x and y
if and only if y = Ff,pi(x, (u0, . . . , upi−1)).
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Figure 2. Iterating f0 : (x1, x2) 7→ (x1, x2)

It is not hard to see that the graph Γ{1}(f) is Γ(f).

Running Example. Consider for instance N = 2, Let f0 : B2 −→ B2 be the
negation function, i.e., f0(x1, x2) = (x1, x2), and consider P = {2, 3}. The graphs
of iterations are given in Figure 2. The Figure 2a shows what happens when
displaying each iteration result. On the contrary, the Figure 2b explicits the
behaviors when always applying 2 or 3 modi�cation and next outputing results.
Notice that here, orientations of arcs are not necessary since the function f0 is
equal to its inverse f−1

0 .

3.5. Proofs of chaos

We will show that,

Proposition 3.8. ΓP(f) is strongly connected if and only if Gf is topologically
transitive on (XN,P , d).

Proof. Suppose that ΓP(f) is strongly connected. Let x = (e, (u, v)), x̌ = (ě, (ǔ, v̌)) ∈
XN,P and ε > 0. We will �nd a point y in the open ball B(x, ε) and n0 ∈ N such
that Gn0

f (y) = x̌: this strong transitivity will imply the transitivity property. We
can suppose that ε < 1 without loss of generality.

Let us denote by (E, (U, V )) the elements of y. As y must be in B(x, ε) and
ε < 1, E must be equal to e. Let k = blog10(ε)c+ 1. dSN,P ((u, v), (U, V )) must be
lower than ε, so the k �rst digits of the fractional part of dSN,P ((u, v), (U, V )) are

null. Let k1 the smallest integer such that, if V 0 = v0, ..., V k1 = vk1 , U0 = u0, ...,

U
∑k1
l=0 V

l−1 = u
∑k1
l=0 v

l−1. Then dSN,P ((u, v), (U, V )) < ε. In other words, any y of

the form (e, ((u0, ..., u
∑k1
l=0 v

l−1), (v0, ..., vk1)) is in B(x, ε).

Let y0 such a point and z = Gk1f (y0) = (e′, (u′, v′)). ΓP(f) being strongly

connected, there is a path between e′ and ě. Denote by a0, . . . , ak2 the edges
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visited by this path. We denote by V k1 = |a0| (number of terms in the �nite
sequence a1), V

k1+1 = |a1|, ..., V k1+k2 = |ak2 |, and by Uk1 = a0
0, U

k1+1 = a1
0, ...,

Uk1+Vk1−1 = a
Vk1−1
0 , Uk1+Vk1 = a0

1, U
k1+Vk1+1 = a1

1,...

Let y = (e, ((u0, ..., u
∑k1
l=0 v

l−1, a0
0, ..., a

|a0|
0 , a0

1, ..., a
|a1|
1 , ..., a0

k2
, ..., a

|ak2 |
k2

,

ǔ0, ǔ1, ...), (v0, ..., vk1 , |a0|, ..., |ak2 |, v̌0, v̌1, ...))). So y ∈ B(x, ε) and Gk1+k2
f (y) = x̌.

Conversely, if ΓP(f) is not strongly connected, then there are 2 vertices e1 and
e2 such that there is no path between e1 and e2. That is, it is impossible to �nd
(u, v) ∈ SN,P and nN such that Gnf (e, (u, v))1 = e2. The open ball B(e2, 1/2)
cannot be reached from any neighborhood of e1, and thus Gf is not transitive. �

We show now that,

Proposition 3.9. If ΓP(f) is strongly connected, then Gf is regular on (XN,P , d).

Proof. Let x = (e, (u, v)) ∈ XN,P and ε > 0. As in the proofs of Prop. 3.8, let
k1 ∈ N such that{

(e, ((u0, ..., uv
k1−1

, U0, U1, ...), (v0, ..., vk1 , V 0, V 1, ...)) |

∀i, j ∈ N, U i ∈ J1,NK, V j ∈ P
}
⊂ B(x, ε),

and y = Gk1f (e, (u, v)). ΓP(f) being strongly connected, there is at least a path
from the Boolean state y1 of y and e. Denote by a0, . . . , ak2 the edges of such a
path. Then the point:

(e, ((u0, ..., uv
k1−1

, a0
0, ..., a

|a0|
0 , a0

1, ..., a
|a1|
1 , ..., a0

k2 , ..., a
|ak2 |
k2

, u0, ..., uv
k1−1

,

a0
0, ..., a

|ak2 |
k2

...), (v0, ..., vk1 , |a0|, ..., |ak2 |, v0, ..., vk1 , |a0|, ..., |ak2 |, ...))

is a periodic point in the neighborhood B(x, ε) of x. �

Gf being topologically transitive and regular, we can thus conclude that

Theorem 3.10. The function Gf is chaotic on (XN,P , d) if and only if its iteration
graph ΓP(f) is strongly connected.

Corollary 3.11. The pseudorandom number generator χ14Secrypt is not chaotic
on (XN,{b}, d) for the negation function.

Proof. In this context, P is the singleton {b}. If b is even, any vertex e of Γ{b}(f0)
cannot reach its neighborhood and thus Γ{b}(f0) is not strongly connected. If b is
even, any vertex e of Γ{b}(f0) cannot reach itself and thus Γ{b}(f0) is not strongly
connected. �

The next section shows how to generate functions and a iteration number b such
that Γ{b} is strongly connected.
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4. Functions with Strongly Connected Γ{b}(f)

First of all, let f : BN → BN. It has been shown [BCGR11, Theorem 4] that if
its iteration graph Γ(f) is strongly connected, then the output of χ14Secrypt follows
a law that tends to the uniform distribution if and only if its Markov matrix is a
doubly stochastic matrix.

In [CHG+14, Section 4], we have presented an e�cient approach which generates
function with strongly connected iteration graph Γ(f) and with doubly stochastic
Markov probability matrix.

Basically, let us consider the N-cube. Let us next remove one Hamiltonian cycle
in this one. When an edge (x, y) is removed, an edge (x, x) is added.

Running Example. For instance, the iteration graph Γ(f∗) (given in Figure 1) is
the 3-cube in which the Hamiltonian cycle 000, 100, 101, 001, 011, 111, 110, 010, 000
has been removed.

We �rst have proven the following result, which states that the N-cube without
one Hamiltonian cycle has the awaited property with regard to the connectivity.

Theorem 4.1. The iteration graph Γ(f) issued from the N-cube where an Hamil-
tonian cycle is removed is strongly connected.

Moreover, if all the transitions have the same probability ( 1
n ), we have proven

the following results:

Theorem 4.2. The Markov Matrix M resulting from the N-cube in which an
Hamiltonian cycle is removed, is doubly stochastic.

Let us consider now a N-cube where an Hamiltonian cycle is removed. Let f be
the corresponding function. The question which remains to solve is can we always
�nd b such that Γ{b}(f) is strongly connected.

The answer is indeed positive. We furtheremore have the following strongest
result.

Theorem 4.3. There exist b ∈ N such that Γ{b}(f) is complete.

Proof. There is an arc (x, y) in the graph Γ{b}(f) if and only if M b
xy is positive

where M is the Markov matrix of Γ(f). It has been shown in [BCGR11, Lemma
3] that M is regular. There exists thus b such there is an arc between any x and
y. �

The next section presents how to build hamiltonian cycles in the N-cube with
the objective to embed them into the pseudorandom number generator.

5. Balanced Hamiltonian Cycle

Many approaches have been developed to solve the problem of building a Gray
code in a N cube [RC81,BS96,SZ04,Byk16], according to properties the produced
code has to verify. For instance, [BS96, SZ04] focus on balanced Gray codes. In
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the transition sequence of these codes, the number of transitions of each element
must di�er at most by 2. This uniformity is a global property on the cycle, i.e.
a property that is established while traversing the whole cycle. On the opposite
side, when the objective is to follow a subpart of the Gray code and to switch each
element approximately the same amount of times, local properties are wished. For
instance, the locally balanced property is studied in [Byk16] and an algorithm that
establishes locally balanced Gray codes is given.

The current context is to provide a function f : BN → BN by removing a
Hamiltonian cycle in the N cube. Such a function is going to be iterated b times
to produce a pseudo random number, i.e. a vertex in the N cube. Obviously,
the number of iterations b has to be su�ciently large to provide a uniform output
distribution. To reduce the number of iterations, the provided Gray code should
ideally possess the both balanced and locally balanced properties. However, none
of the two algorithms is compatible with the second one: balanced Gray codes
that are generated by state of the art works [SZ04,BS96] are not locally balanced.
Conversely, locally balanced Gray codes yielded by Igor Bykov approach [Byk16]
are not globally balanced. This section thus shows how the non deterministic ap-
proach presented in [SZ04] has been automatized to provide balanced Hamiltonian
paths such that, for each subpart, the number of switches of each element is as
uniform as possible.

5.1. Analysis of the Robinson-Cohn extension algorithm

As far as we know three works, namely [RC81], [BS96], and [SZ04] have ad-
dressed the problem of providing an approach to produce balanced gray code.
The authors of [RC81] introduced an inductive approach aiming at producing bal-
anced Gray codes, provided the user gives a special subsequence of the transition
sequence at each induction step. This work have been strengthened in [BS96]
where the authors have explicitly shown how to construct such a subsequence.
Finally the authors of [SZ04] have presented the Robinson-Cohn extension algo-
rithm. There rigorous presentation of this one have mainly allowed them to prove
two properties. The former states that if N is a 2-power, a balanced Gray code
is always totally balanced. The latter states that for every N there exists a Gray
code such that all transition count numbers are are 2-powers whose exponents are
either equal or di�er from each other by 1. However, the authors do not prove that
the approach allows to build (totally balanced) Gray code. What follows shows
that this fact is established and �rst recalls the approach.

Let be given a N − 2-bit Gray code whose transition sequence is SN−2. What
follows is the Robinson-Cohn extension method [SZ04] which produces a n-bits
Gray code.

(1) Let l be an even positive integer. Find u1, u2, . . . , ul−2, v (maybe empty)
subsequences of SN−2 such that SN−2 is the concatenation of

si1 , u0, si2 , u1, si3 , u2, . . . , sil−1, ul−2, sil , v
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where i1 = 1, i2 = 2, and u0 = ∅ (the empty sequence).
(2) Replace in SN−2 the sequences u0, u1, u2, . . . , ul−2 by N − 1, u′(u1,N −

1,N), u′(u2,N,N − 1), u′(u3,N − 1,N), . . . , u′(ul−2,N,N − 1) respectively,
where u′(u, x, y) is the sequence u, x, uR, y, u such that uR is u in reversed
order. The obtained sequence is further denoted as U .

(3) Construct the sequences V = vR,N, v, W = N− 1, SN−2,N, and let W ′ be
W where the �rst two elements have been exchanged.

(4) The transition sequence SN is thus the concatenation UR, V,W ′.

It has been proven in [SZ04] that SN is transition sequence of a cyclic N-bits
Gray code if SN−2 is. However, the step (1) is not a constructive step that precises
how to select the subsequences which ensures that yielded Gray code is balanced.
Next section shows how to choose the sequence l to have the balance property.

5.2. Balanced Codes

Let us �rst recall how to formalize the balance property of a Gray code. Let
L = w1, w2, . . . , w2N be the sequence of a N-bits cyclic Gray code. The transition
sequence S = s1, s2, . . . , s2n , si, 1 ≤ i ≤ 2N, indicates which bit position changes
between codewords at index i and i+ 1 modulo 2N. The transition count function
TCN : {1, . . . ,N} → {0, . . . , 2N} gives the number of times i occurs in S, i.e., the
number of times the bit i has been switched in L.

The Gray code is totally balanced if TCN is constant (and equal to 2N

N ). It is
balanced if for any two bit indices i and j, |TCN(i)− TCN(j)| ≤ 2.

Running Example. Let L∗ = 000, 100, 101, 001, 011, 111, 110, 010 be the Gray
code that corresponds to the Hamiltonian cycle that has been removed in f∗. Its
transition sequence is S = 3, 1, 3, 2, 3, 1, 3, 2 and its transition count function is
TC3(1) = TC3(2) = 2 and TC3(3) = 4. Such a Gray code is balanced.

Let now L4 = 0000, 0010, 0110, 1110, 1111, 0111, 0011, 0001, 0101, 0100, 1100, 1101, 1001, 1011, 1010, 1000
be a cyclic Gray code. Since S = 2, 3, 4, 1, 4, 3, 2, 3, 1, 4, 1, 3, 2, 1, 2, 4 TC4 is equal
to 4 everywhere, this code is thus totally balanced.

On the contrary, for the standard 4-bits Gray code Lst = 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100,
1101, 1111, 1110, 1010, 1011, 1001, 1000, we have TC4(1) = 8 TC4(2) = 4 TC4(3) =
TC4(4) = 2 and the code is neither balanced nor totally balanced.

Theorem 5.1. Let N in N∗, and aN be de�ned by aN = 2b 2N

2N
c. There exists then

a sequence l in step (1) of the Robinson-Cohn extension algorithm such that all
the transition counts TCN(i) are aN or aN + 2 for any i, 1 ≤ i ≤ N.

The proof is done by induction on N. Let us immediately verify that it is
established for both odd and even smallest values, i.e. 3 and 4. For the initial case
where N = 3, i.e. N− 2 = 1 we successively have: S1 = 1, 1, l = 2, u0 = ∅, and
v = ∅. Thus again the algorithm successively produces U = 1, 2, 1, V = 3, W =
2, 1, 1, 3, andW ′ = 1, 2, 1, 3. Finally, S3 is 1, 2, 1, 3, 1, 2, 1, 3 which obviously veri�es
the theorem. For the initial case where N = 4, i.e. N− 2 = 2 we successively have:
S1 = 1, 2, 1, 2, l = 4, u0, u1, u2 = ∅, ∅, ∅, and v = ∅. Thus again the algorithm



14 TITLE WILL BE SET BY THE PUBLISHER

successively produces U = 1, 3, 2, 3, 4, 1, 4, 3, 2, V = 4, W = 3, 1, 2, 1, 2, 4, and
W ′ = 1, 3, 2, 1, 2, 4. Finally, S4 is 2, 3, 4, 1, 4, 3, 2, 3, 1, 4, 1, 3, 2, 1, 2, 4 such that
TC4(i) = 4 and the theorem is established for odd and even initial values.

For the inductive case, let us �rst de�ne some variables. Let cN (resp. dN) be
the number of elements whose transition count is exactly aN (resp aN + 2). These
two variables are de�ned by the system

{
cN + dN = N
cNaN + dN(aN + 2) = 2N

⇔

 dN =
2N − N.aN

2
cN = N− dN

Since aN is even, dN is an integer. Let us �rst proove that both cN and dN are
positive integers. Let qN and rN, respectively, be the quotient and the remainder
in the Euclidean disvision of 2N by 2N, i.e. 2N = qN.2N + rN, with 0 ≤ rN < 2N.
First of all, the integer r is even since rN = 2N−qN.2N = 2(2N−1−qN.N). Next, aN

is 2N−rN
N . Consequently dN is rN/2 and is thus a positive integer s.t. 0 ≤ dN < N.

The proof for cN is obvious.
For any i, 1 ≤ i ≤ N, let ziN (resp. tiN and biN) be the occurence number of

element i in the sequence u0, . . . , ul−2 (resp. in the sequences si1 , . . . , sil and v)
in step (1) of the algorithm.

Due to the de�nition of u′ in step (2), 3.ziN + tiN is the number of element i in
the sequence U . It is clear that the number of element i in the sequence V is 2biN
due to step (3). We thus have the following system:

{
3.ziN + tiN + 2.biN + TCN−2(i) = TCN(i)
ziN + tiN + biN = TCN−2(i)

⇔

{
ziN =

TCN(i)− 2.TCN−2(i)− biN
2

tiN = TCN−2(i)− ziN − biN
(3)

In this set of 2 equations with 3 unknown variables, let bi be set with 0. In
this case, since TCN is even (equal to aN or to aN + 2), the variable ziN is thus
an integer. Let us now prove that the resulting system has always positive integer
solutions zi, ti, 0 ≤ zi, ti ≤ TCN−2(i) and s.t. their sum is equal to TCN−2(i).
This latter consraint is obviously established if the system has a solution. We thus
have the following system.

{
ziN =

TCN(i)− 2.TCN−2(i)

2
tiN = TCN−2(i)− ziN

(4)
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The de�nition of TCN(i) depends on the value of N. When 3 ≤ N ≤ 7, values
are de�ned as follows:

TC3 = [2, 2, 4]

TC5 = [6, 6, 8, 6, 6]

TC7 = [18, 18, 20, 18, 18, 18, 18]

TC4 = [4, 4, 4, 4]

TC6 = [10, 10, 10, 10, 12, 12]

It is not hard to verify that all these instanciations verify the aformentioned con-
traints.

When N ≥ 8, TCN(i) is de�ned as follows:

TCN(i) =

{
aN if 1 ≤ i ≤ cN
aN + 2 if cN + 1 ≤ i ≤ cN + dN

(5)

We thus have

TCN(i)− 2.TCN−2(i) ≥ aN − 2(aN−2 + 2)

≥ 2N−rN
N − 2

(
2N−2−rN−2

N−2 + 2
)

≥ 2N−2N
N − 2

(
2N−2

N−2 + 2
)

≥ (N− 2).2N − 2N.2N−2 − 6N(N − 2)

N.(N− 2)

A simple variation study of the function t : R → R such that x 7→ t(x) =
(x−2).2x−2x.2x−2−6x(x−2) shows that its derivative is strictly postive if x ≥ 6
and t(8) = 224. The integer TCN(i) − 2.TCN−2(i) is thus positive for any N ≥ 8
and the proof is established.

For each element i, we are then left to choose ziN positions among TCN(i), which

leads to
(
TCN(i)
ziN

)
possibilities. Notice that all such choices lead to a hamiltonian

path.

6. Stopping Time

This section considers functions f : BN → BN issued from an hypercube where
an Hamiltonian path has been removed as described in previous section. Notice
that the iteration graph is always a subgraph of N-cube augmented with all the
self-loop, i.e., all the edges (v, v) for any v ∈ BN. Next, if we add probabilities on
the transition graph, iterations can be interpreted as Markov chains.
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Running Example. Let us consider for instance the graph Γ(f) de�ned in Fig-

ure 1. and the probability function p de�ned on the set of edges as follows:

p(e)

{
= 2

3 if e = (v, v) with v ∈ B3,
= 1

6 otherwise.

The matrix P of the Markov chain associated to the function f∗ and to its proba-
bility function p is

P =
1

6



4 1 1 0 0 0 0 0
1 4 0 0 0 1 0 0
0 0 4 1 0 0 1 0
0 1 1 4 0 0 0 0
1 0 0 0 4 0 1 0
0 0 0 0 1 4 0 1
0 0 0 0 1 0 4 1
0 0 0 1 0 1 0 4


A speci�c random walk in this modi�ed hypercube is �rst introduced (See sec-

tion 6.1). We further theoretical study this random walk to provide a upper
bound of fair sequences (See section 6.2). We �nally complete these study with
experimental results that reduce this bound (Sec. ??). Notice that for a general
references on Markov chains see [LPW06], and particularly Chapter 5 on stopping
times.

6.1. Formalizing the Random Walk

First of all, let π, µ be two distributions on BN. The total variation distance
between π and µ is denoted ‖π − µ‖TV and is de�ned by

‖π − µ‖TV = max
A⊂BN

|π(A)− µ(A)|.

It is known that

‖π − µ‖TV =
1

2

∑
X∈BN

|π(X)− µ(X)|.

Moreover, if ν is a distribution on BN, one has

‖π − µ‖TV ≤ ‖π − ν‖TV + ‖ν − µ‖TV

Let P be the matrix of a Markov chain on BN. P (X, ·) is the distribution
induced by the X-th row of P . If the Markov chain induced by P has a stationary
distribution π, then we de�ne

d(t) = max
X∈BN

‖P t(X, ·)− π‖TV.
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and

tmix(ε) = min{t | d(t) ≤ ε}.
Intuitively speaking, tmix is a mixing time i.e., is the time until the matrix X

of a Markov chain is ε-close to a stationary distribution.
One can prove that

tmix(ε) ≤ dlog2(ε−1)etmix(
1

4
)

Let (Xt)t∈N be a sequence of BN valued random variables. A N-valued random
variable τ is a stopping time for the sequence (Xi) if for each t there exists Bt ⊆
(BN)t+1 such that {τ = t} = {(X0, X1, . . . , Xt) ∈ Bt}. In other words, the event
{τ = t} only depends on the values of (X0, X1, . . . , Xt), not on Xk with k > t.

Let (Xt)t∈N be a Markov chain and f(Xt−1, Zt) a random mapping represen-
tation of the Markov chain. A randomized stopping time for the Markov chain
is a stopping time for (Zt)t∈N. If the Markov chain is irreducible and has π as
stationary distribution, then a stationary time τ is a randomized stopping time
(possibly depending on the starting position X), such that the distribution of Xτ

is π:

PX(Xτ = Y ) = π(Y ).

6.2. Upper bound of Stopping Time

A stopping time τ is a strong stationary time if Xτ is independent of τ .

Theorem 6.1. If τ is a strong stationary time, then d(t) ≤ maxX∈BN PX(τ > t).

Let E = {(X,Y ) | X ∈ BN, Y ∈ BN, X = Y or X ⊕ Y ∈ 0∗10∗}. In other
words, E is the set of all the edges in the classical N-cube. Let h be a function from
BN into J1,NK. Intuitively speaking h aims at memorizing for each node X ∈ BN

which edge is removed in the Hamiltonian cycle, i.e. which bit in J1,NK cannot be
switched.

We denote by Eh the set E \ {(X,Y ) | X ⊕ Y = 0N−h(X)10h(X)−1}. This is the
set of the modi�ed hypercube, i.e., the N-cube where the Hamiltonian cycle h has
been removed.

We de�ne the Markov matrix Ph for each line X and each column Y as follows: Ph(X,X) = 1
2 + 1

2N
Ph(X,Y ) = 0 if (X,Y ) /∈ Eh
Ph(X,Y ) = 1

2N if X 6= Y and (X,Y ) ∈ Eh
(6)

We denote by h : BN → BN the function such that for any X ∈ BN, (X,h(X)) ∈
E and X⊕h(X) = 0N−h(X)10h(X)−1. The function h is said square-free if for every
X ∈ BN, h(h(X)) 6= X.

Lemma 6.2. If h is bijective and square-free, then h(h
−1

(X)) 6= h(X).
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Proof. Let h be bijective. Let k ∈ J1,NK s.t. h(h
−1

(X)) = k. Then (h
−1

(X), X)

belongs to E and h
−1

(X)⊕X = 0N−k10k−1. Let us suppose h(X) = h(h
−1

(X)).
In such a case, h(X) = k. By de�nition of h, (X,h(X)) ∈ E and X ⊕ h(X) =

0N−h(X)10h(X)−1 = 0N−k10k−1. Thus h(X) = h
−1

(X), which leads to h(h(X)) =
X. This contradicts the square-freeness of h. �

Let Z be a random variable that is uniformly distributed over J1,NK × B. For
X ∈ BN, we de�ne, with Z = (i, b),{

f(X,Z) = X ⊕ (0N−i10i−1) if b = 1 and i 6= h(X),
f(X,Z) = X otherwise.

The Markov chain is thus de�ned as

Xt = f(Xt−1, Zt)

An integer ` ∈ J1,NK is said fair at time t if there exists 0 ≤ j < t such that
Zj+1 = (`, ·) and h(Xj) 6= `. In other words, there exist a date j before t where
the �rst element of the random variable Z is exactly l (i.e., l is the strategy at
date j) and where the con�guration Xj allows to traverse the edge l.

Let τstop be the �rst time all the elements of J1,NK are fair. The integer τstop

is a randomized stopping time for the Markov chain (Xt).

Lemma 6.3. The integer τstop is a strong stationary time.

Proof. Let τ` be the �rst time that ` is fair. The random variable Zτ` is of the
form (`, b) such that b = 1 with probability 1

2 and b = 0 with probability 1
2 . Since

h(Xτ`−1) 6= ` the value of the `-th bit of Xτ` is 0 or 1 with the same probability
( 1

2 ). This probability is independent of the value of the other bits.
Moving next in the chain, at each step, the l-th bit is switched from 0 to 1 or

from 1 to 0 each time with the same probability. Therefore, for t ≥ τ`, the `-th
bit of Xt is 0 or 1 with the same probability, proving the lemma. �

Theorem 6.4. If h is bijective and square-free, then E[τstop] ≤ 8N2+4N ln(N+1).

For each X ∈ BN and ` ∈ J1,NK, let SX,` be the random variable that counts
the number of steps from X until we reach a con�guration where ` is fair. More
formally

SX,` = min{t ≥ 1 | h(Xt−1) 6= ` and Zt = (`, .) and X0 = X}.

Lemma 6.5. Let h is a square-free bijective function. Then for all X and all `,
the inequality E[SX,`] ≤ 8N2 is established.

Proof. For every X, every `, one has P(SX,`) ≤ 2) ≥ 1
4N2 . Let X0 = X. Indeed,

• if h(X) 6= `, then P(SX,` = 1) = 1
2N ≥

1
4N2 .
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• otherwise, h(X) = `, then P(SX,` = 1) = 0. But in this case, intuitively,

it is possible to move from X to h
−1

(X) (with probability 1
2N ). And in

h
−1

(X) the l-th bit can be switched. More formally, since h is square-free,

h(X) = h(h(h
−1

(X))) 6= h
−1

(X). It follows that (X,h
−1

(X)) ∈ Eh. We

thus have P (X1 = h
−1

(X)) = 1
2N . Now, by Lemma 6.2, h(h

−1
(X)) 6=

h(X). Therefore P(Sx,` = 2 | X1 = h
−1

(X)) = 1
2N , proving that P(Sx,` ≤

2) ≥ 1
4N2 .

Therefore, P(SX,` ≥ 3) ≤ 1− 1
4N2 . By induction, one has, for every i, P(SX,` ≥

2i) ≤
(
1− 1

4N2

)i
. Moreover, since SX,` is positive, it is known [MU05, lemma 2.9],

that

E[SX,`] =

+∞∑
i=1

P(SX,` ≥ i).

Since P(SX,` ≥ i) ≥ P(SX,` ≥ i+ 1), one has

E[SX,`] =

+∞∑
i=1

P(SX,` ≥ i) ≤ P(SX,` ≥ 1) + P(SX,` ≥ 2) + 2

+∞∑
i=1

P(SX,` ≥ 2i).

Consequently,

E[SX,`] ≤ 1 + 1 + 2

+∞∑
i=1

(
1− 1

4N2

)i
= 2 + 2(4N2 − 1) = 8N2,

which concludes the proof. �

Let τ ′stop be the time used to get all the bits but one fair.

Lemma 6.6. One has E[τ ′stop] ≤ 4N ln(N + 1).

Proof. This is a classical Coupon Collector's like problem. Let Wi be the random
variable counting the number of moves done in the Markov chain while we had

exactly i− 1 fair bits. One has τ ′stop =
∑N−1
i=1 Wi. But when we are at position X

with i− 1 fair bits, the probability of obtaining a new fair bit is either 1− i−1
N if

h(X) is fair, or 1− i−2
N if h(X) is not fair.

Therefore, P(Wi = k) ≤
(
i−1
N

)k−1 N−i+2
N . Consequently, we have P(Wi ≥ k) ≤(

i−1
N

)k−1 N−i+2
N−i+1 . It follows that E[Wi] =

∑+∞
k=1 P(Wi ≥ k) ≤ N N−i+2

(N−i+1)2 ≤
4N

N−i+2 .

It follows that E[Wi] ≤ 4N
N−i+2 . Therefore

E[τ ′stop] =

N−1∑
i=1

E[Wi] ≤ 4N
N−1∑
i=1

1

N− i+ 2
= 4N

N+1∑
i=3

1

i
.

But
∑N+1
i=1

1
i ≤ 1 + ln(N + 1). It follows that 1 + 1

2 +
∑N+1
i=3

1
i ≤ 1 + ln(N + 1).

Consequently, E[τ ′stop] ≤ 4N(− 1
2 + ln(N + 1)) ≤ 4N ln(N + 1). �
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One can now prove Theorem 6.4.

Proof. Since τ ′stop is the time used to obtain N− 1 fair bits. Assume that the last
unfair bit is `. One has τstop = τ ′stop + SXτ ,`, and therefore E[τstop] = E[τ ′stop] +
E[SXτ ,`]. Therefore, Theorem 6.4 is a direct application of lemma 6.5 and 6.6. �

Notice that the calculus of the stationary time upper bound is obtained under
the following constraint: for each vertex in the N-cube there are one ongoing arc
and one outgoing arc that are removed. The calculus does not consider (balanced)
Hamiltonian cycles, which are more regular and more binding than this constraint.
In this later context, we claim that the upper bound for the stopping time should
be reduced. This fact is studied in the next section.

6.3. Practical Evaluation of Stopping Times

Let be given a function f : BN → BN and an initial seed x0. The pseudo
code given in algorithm 2 returns the smallest number of iterations such that all
elements ` ∈ J1,NK are fair. It allows to deduce an approximation of E[τstop] by
calling this code many times with many instances of function and many seeds.

Practically speaking, for each number N,3 ≤ N ≤ 16, 10 functions have been
generaed according to method presented in section 5. For each of them, the calcu-
lus of the approximation of E[τstop] is executed 10000 times with a random seed.
The table 1 summarizes results. It can be observed that the approximation is
largely smaller than the upper bound given in theorem 6.4.

Input: a function f , an initial con�guration x0 (N bits)
Output: a number of iterations nbit
nbit← 0;

x← x0;

visited← ∅;
while |visited| < N do

s← Random(n) ;

image← f(x);

if x[s] 6= image[s] then
visited← visited ∪ {s}

end

x[s]← image[s];

nbit← nbit + 1;

end

return nbit;
Algorithm 2: Pseudo Code of the stoping time calculus
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N 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N 3 10.9 5 17.7 7 25 9 32.7 11 40.8 13 49.2 15 16

Table 1. Average Stopping Time

7. Experiments

Let us �nally present the pseudorandom number generator χ15Rairo, which is
based on random walks in Γ{b}(f). More precisely, let be given a Boolean map

f : BN → BN, a PRNG Random, an integer b that corresponds to an iteration
number (i.e., the length of the walk), and an initial con�guration x0. Starting
from x0, the algorithm repeats b times a random choice of which edge to follow,
and traverses this edge provided it is allowed to do so, i.e., when Random(1) is
not null. The �nal con�guration is thus outputted. This PRNG is formalized in
Algorithm 3.

Input: a function f , an iteration number b, an initial con�guration x0 (n
bits)

Output: a con�guration x (n bits)
x← x0;

for i = 0, . . . , b− 1 do
if Random(1) 6= 0 then

s← Random(n);

x← Ff (s, x);

end

end

return x;
Algorithm 3: Pseudo Code of the χ15Rairo PRNG

This PRNG is slightly di�erent from χ14Secrypt recalled in Algorithm 1. As
this latter, the length of the random walk of our algorithm is always constant
(and is equal to b). However, in the current version, we add the constraint that
the probability to execute the function Ff is equal to 0.5 since the output of
Random(1) is uniform in {0, 1}. This constraint is added to match the theoretical
framework of Sect. 6.

Notice that the chaos property of Gf given in Sect.3 only requires that the graph
Γ{b}(f) is strongly connected. Since the χ15Rairo algorithm only adds probability
constraints on existing edges, it preserves this property.

For each number N = 4, 5, 6, 7, 8 of bits, we have generated the functions ac-
cording to the method given in Sect. 4. For each N, we have then restricted this
evaluation to the function whose Markov Matrix (issued from Eq. (6)) has the
smallest practical mixing time. Such functions are given in Table 2. In this table,
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Function f f(x), for x in (0, 1, 2, . . . , 2n − 1) N b E[τ ]
a© [13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8] 4 64 154
b© [29, 22, 25, 30, 19, 27, 24, 16, 21, 6, 5, 28, 23, 26, 1, 17, 5 78 236

31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 7, 20, 11, 18, 0, 4]
[55, 60, 45, 44, 58, 62, 61, 48, 53, 50, 52, 36, 59, 34, 33, 49,
15, 42, 47, 46, 35, 10, 57, 56, 7, 54, 39, 37, 51, 2, 1, 40, 63,

c© 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 6 88 335
12, 29, 8, 43, 14, 41, 0, 5, 38, 4, 6, 11, 3, 9, 32]

[111, 94, 93, 116, 122, 90, 125, 88, 115, 126, 119, 84, 123, 98,
81, 120, 109, 106, 105, 110, 99, 107, 104, 72, 71, 118, 117,

96, 103, 102, 113, 64, 79, 86, 95, 124, 83, 91, 121, 24, 85, 22,
d© 69, 20, 19, 114, 17, 112, 77, 76, 13, 108, 74, 10, 9, 73, 67, 66, 7 99 450

101, 100, 75, 82, 97, 0, 127, 54, 57, 62, 51, 59, 56, 48, 53, 38,
37, 60, 55, 58, 33, 49, 63, 44, 47, 40, 42, 46, 45, 41, 35, 34,
39, 52, 43, 50, 32, 36, 29, 28, 61, 92, 26, 18, 89, 25, 87, 30,
23, 4, 27, 2, 16, 80, 31, 78, 15, 14, 3, 11, 8, 12, 5, 70, 21,

68, 7, 6, 65, 1]
[223, 190, 249, 254, 187, 251, 233, 232, 183, 230, 247, 180, 227,
178, 240, 248, 237, 236, 253, 172, 203, 170, 201, 168, 229, 166,
165, 244, 163, 242, 241, 192, 215, 220, 205, 216, 218, 222, 221,
208, 213, 210, 212, 214, 219, 211, 217, 209, 239, 202, 207, 140,
139, 234, 193, 204, 135, 196, 199, 132, 194, 130, 225, 200, 159,
62, 185, 252, 59, 250, 169, 56, 191, 246, 245, 52, 243, 50, 176,
48, 173, 238, 189, 44, 235, 42, 137, 184, 231, 38, 37, 228, 35,
226, 177, 224, 151, 156, 141, 152, 154, 158, 157, 144, 149, 146,
148, 150, 155, 147, 153, 145, 175, 206, 143, 136, 11, 142, 129,

e© 8, 7, 198, 197, 4, 195, 2, 161, 160, 255, 124, 109, 108, 122, 8 110 582
126, 125, 112, 117, 114, 116, 100, 123, 98, 97, 113, 79, 106,
111, 110, 99, 74, 121, 120, 71, 118, 103, 101, 115, 66, 65,
104, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86,
80, 88, 77, 76, 93, 72, 107, 78, 105, 64, 69, 102, 68, 70, 75,
67, 73, 96, 55, 58, 45, 188, 51, 186, 61, 40, 119, 182, 181,
53, 179, 54, 33, 49, 15, 174, 47, 60, 171, 46, 57, 32, 167, 6,
36, 164, 43, 162, 1, 0, 63, 26, 25, 30, 19, 27, 17, 28, 31,
20, 23, 21, 18, 22, 16, 24, 13, 10, 29, 14, 3, 138, 41, 12,

39, 134, 133, 5, 131, 34, 9, 128]

Table 2. Functions with DSCC Matrix and smallest MT

let us consider for instance the function a© from B4 to B4 de�ned by the following
images : [13, 10, 9, 14, 3, 11, 1, 12, 15, 4, 7, 5, 2, 6, 0, 8]. In other words, the image of
3 (0011) by a© is 14 (1110): it is obtained as the binary value of the fourth element
in the second list (namely 14).

In this table the column that is labeled with b (respectively by E[τ ]) gives the
practical mixing time where the deviation to the standard distribution is lesser
than 10−6 (resp. the theoretical upper bound of stopping time as described in
Sect. 6).

Let us �rst discuss about results against the NIST test suite. In our experiments,
100 sequences (s = 100) of 1,000,000 bits are generated and tested. If the value
PT of any test is smaller than 0.0001, the sequences are considered to be not good
enough and the generator is unsuitable. Table 3 shows PT of sequences based
on discrete chaotic iterations using di�erent schemes. If there are at least two
statistical values in a test, this test is marked with an asterisk and the average
value is computed to characterize the statistics. We can see in Table 3 that all
the rates are greater than 97/100, i.e., all the generators achieve to pass the NIST
battery of tests.
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Method a© b© c© d© e©

Frequency (Monobit) 0.851 (0.98) 0.719 (0.99) 0.699 (0.99) 0.514 (1.0) 0.798 (0.99)

Frequency (Monobit) 0.851 (0.98) 0.719 (0.99) 0.699 (0.99) 0.514 (1.0) 0.798 (0.99)

Frequency within a Block 0.262 (0.98) 0.699 (0.98) 0.867 (0.99) 0.145 (1.0) 0.455 (0.99)

Cumulative Sums (Cusum) * 0.301 (0.98) 0.521 (0.99) 0.688 (0.99) 0.888 (1.0) 0.598 (1.0)

Runs 0.224 (0.97) 0.383 (0.97) 0.108 (0.96) 0.213 (0.99) 0.616 (0.99)

Longest Run of 1s 0.383 (1.0) 0.474 (1.0) 0.983 (0.99) 0.699 (0.98) 0.897 (0.96)

Binary Matrix Rank 0.213 (1.0) 0.867 (0.99) 0.494 (0.98) 0.162 (0.99) 0.924 (0.99)

Disc. Fourier Transf. (Spect.) 0.474 (1.0) 0.739 (0.99) 0.012 (1.0) 0.678 (0.98) 0.437 (0.99)

Unoverlapping Templ. Match.* 0.505 (0.990) 0.521 (0.990) 0.510 (0.989) 0.511 (0.990) 0.499 (0.990)

Overlapping Temp. Match. 0.574 (0.98) 0.304 (0.99) 0.437 (0.97) 0.759 (0.98) 0.275 (0.99)

Maurer's Universal Statistical 0.759 (0.96) 0.699 (0.97) 0.191 (0.98) 0.699 (1.0) 0.798 (0.97)

Approximate Entropy (m=10) 0.759 (0.99) 0.162 (0.99) 0.867 (0.99) 0.534 (1.0) 0.616 (0.99)

Random Excursions * 0.666 (0.994) 0.410 (0.962) 0.287 (0.998) 0.365 (0.994) 0.480 (0.985)

Random Excursions Variant * 0.337 (0.988) 0.519 (0.984) 0.549 (0.994) 0.225 (0.995) 0.533 (0.993)

Serial* (m=10) 0.630 (0.99) 0.529 (0.99) 0.460 (0.99) 0.302 (0.995) 0.360 (0.985)

Linear Complexity 0.719 (1.0) 0.739 (0.99) 0.759 (0.98) 0.122 (0.97) 0.514 (0.99)

Table 3. NIST SP 800-22 test results (PT )

8. Conclusion

This work has assumed a Boolean map f which is embedded into a discrete-time
dynamical system Gf . This one is supposed to be iterated a �xed number p1 or
p2,. . . , or p of times before its output is considered. This work has �rst shown
that iterations of Gf are chaotic if and only if its iteration graph ΓP(f) is strongly
connected where P is {p1, . . . , p}. Any PRNG, which iterates Gf as above satis�es
in some cases the property of chaos.

We then have shown that a previously presented approach can be directly ap-
plied here to generate function f with strongly connected ΓP(f). The iterated
map inside the generator is built by �rst removing from a N-cube an Hamiltonian
path and next adding a self loop to each vertex. The PRNG can thus be seen
as a random walks of length in P into N this new cube. We furthermore have
exhibit a bound on the number of iterations that are su�cient to obtain a uniform
distribution of the output. Finally, experiments through the NIST battery have
shown that the statistical properties are almost established for N = 4, 5, 6, 7, 8.

In future work, we intend to understand the link between statistical tests and
the properties of chaos for the associated iterations. By doing so, relations between
desired statistically unbiased behaviors and topological properties will be under-
stood, leading to better choices in iteration functions. Conditions allowing the
reduction of the stopping-time will be investigated too, while other modi�cations
of the hypercube will be regarded in order to enlarge the set of known chaotic and
random iterations.
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