
Theoretical Informatics and Applications Will be set by the publisher
Informatique Théorique et Applications

RANDOM WALK IN A N-CUBE WITHOUT
HAMILTONIAN CYCLE TO CHAOTIC PSEUDORANDOM

NUMBER GENERATION: THEORETICAL AND
PRACTICAL CONSIDERATIONS

Jean-François Couchot, Christophe Guyeux,
Pierre-Cyrille Heam1

Abstract. This paper is dedicated to the design of chaotic random
generators and extends previous works proposed by some of the au-
thors. We propose a theoretical framework proving both the chaotic
properties and that the limit distribution is uniform. A theoretical
bound on the stationary time is given and practical experiments show
that the generators successfully pass the classical statistical tests.

1991 Mathematics Subject Classification. 34C28, 37A25,11K45.

1. Introduction

The exploitation of chaotic systems to generate pseudorandom sequences is
an hot topic [?,?,?]. Such systems are fundamentally chosen due to their unpre-
dictable character and their sensitiveness to initial conditions. In most cases, these
generators simply consist in iterating a chaotic function like the logistic map [?,?]
or the Arnold’s one [?]. . . It thus remains to find optimal parameters in such func-
tions so that attractors are avoided, hoping by doing so that the generated numbers
follow a uniform distribution. In order to check the quality of the produced out-
puts, it is usual to test the PRNGs (Pseudo-Random Number Generators) with
statistical batteries like the so-called DieHARD [?], NIST [?], or TestU01 [?] ones.

In its general understanding, chaos notion is often reduced to the strong sensi-
tiveness to the initial conditions (the well known “butterfly effect”): a continuous

Keywords and phrases: Pseudorandom Number Generator, Theory of Chaos, Markov Matrice,
Hamiltonian Path, Mixing Time, Stopping Time, Statistical Test
1 FEMTO-ST Institute, University of Franche-Comté, Belfort, France

c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

function k defined on a metrical space is said strongly sensitive to the initial con-
ditions if for each point x and each positive value ε, it is possible to find another
point y as close as possible to x, and an integer t such that the distance between
the t-th iterates of x and y, denoted by kt(x) and kt(y), are larger than ε. How-
ever, in his definition of chaos, Devaney [?] imposes to the chaotic function two
other properties called transitivity and regularity. Functions evoked above have
been studied according to these properties, and they have been proven as chaotic
on R. But nothing guarantees that such properties are preserved when iterating
the functions on floating point numbers, which is the domain of interpretation of
real numbers R on machines.

To avoid this lack of chaos, we have previously presented some PRNGs that
iterate continuous functions Gf on a discrete domain {1, . . . , n}N×{0, 1}n, where
f is a Boolean function (i.e., f : {0, 1}n → {0, 1}n). These generators are
CIPRNG1

f (u) [?,?], CIPRNG2
f (u, v) [?] and χ14Secrypt [?] where CI means Chaotic

Iterations. We have firstly proven in [?] that, to establish the chaotic nature of al-
gorithm CIPRNG1

f , it is necessary and sufficient that the asynchronous iterations
are strongly connected. We then have proven that it is necessary and sufficient
that the Markov matrix associated to this graph is doubly stochastic, in order to
have a uniform distribution of the outputs. We have finally established sufficient
conditions to guarantee the first property of connectivity. Among the generated
functions, we thus have considered for further investigations only the ones that
satisfy the second property too. In [?], we have proposed an algorithmic method
allowing to directly obtain a strongly connected iteration graph having a doubly
stochastic Markov matrix.

However, it cannot be directly deduced that χ14Secrypt is chaotic since we do
not output all the successive values of iterating Ff . This algorithm only displays a
subsequence xb.n of a whole chaotic sequence xn and it is indeed definitively false
that the chaos property is preserved for any subsequence of a chaotic sequence.
This article presents conditions to preserve this property.

An approach to generate a large class of chaotic functions has been presented
in [?]. It is basically fourfold: first build a N-cube, next remove an Hamiltonian
cycle, further add self-loop on each vertex and finally, translate this into a Boolean
map. We are then left to check whether this approach proposes maps with the
required conditions for the chaos. The answer is indeed positive. The pseudoran-
dom number generation can thus be seen as a random walk in a N-cube without
a Hamiltonian cycle.

In the PRNG context, there remains to find which subsequence is theoretically
and practically sufficient to extract. A uniform distribution is indeed awaited and
this cannot be obtained in a walk in the hypercube with paths of short length b.
However, the higher is b the slower is the algorithm to generate pseudorandom
numbers. The time until the corresponding Markov chain is close to the uni-
form distribution is a metric that should be theoretically and practically studied.
Finally, the ability of the approach to face classical tests suite has to be evaluated.

The remainder of this article is organized as follows. The next section is de-
voted to preliminaries, basic notations, and terminologies regarding Boolean map

TITLE WILL BE SET BY THE PUBLISHER 3

iterations. Then, in Section 3, Devaney’s definition of chaos is recalled while the
proofs of chaos of our most general PRNGs is provided. This is the first major
contribution. Section 4 shows how to generate functions with required properties
making the PRNG chaotic. The next section (Sect. ??) defines the theoretical
framework to study the stopping-time, i.e., time until reaching a uniform distri-
bution. This is the second major contribution. The Section ?? gives practical
results on evaluating the PRNG against the NIST suite. This research work ends
by a conclusion section, where the contribution is summarized and intended future
work is outlined.

2. Preliminaries

In what follows, we consider the Boolean algebra on the set B = {0, 1} with
the classical operators of conjunction ’.’, of disjunction ’+’, of negation ’ ’, and of
disjunctive union ⊕.

Let us first introduce basic notations. Let N be a positive integer. The set
{1, 2, . . . ,N} of integers belonging between 1 and N is further denoted as J1,NK.
A Boolean map f is a function from BN to itself such that x = (x1, . . . , xN) maps
to f(x) = (f1(x), . . . , fN(x)). In what follows, for any finite set X, |X| denotes its
cardinality and byc is the largest integer lower than y.

Functions are iterated as follows. At the tth iteration, only the st−th component
is said to be “iterated”, where s = (st)t∈N is a sequence of indices taken in J1;NK
called “strategy”. Formally, let Ff : BN × J1;NK to BN be defined by

Ff (x, i) = (x1, . . . , xi−1, fi(x), xi+1, . . . , xN).

Then, let x0 ∈ BN be an initial configuration and s ∈ J1;NKN be a strategy, the
dynamics are described by the recurrence

xt+1 = Ff (xt, st). (1)

Let be given a Boolean map f . Its associated iteration graph Γ(f) is the directed
graph such that the set of vertices is BN, and for all x ∈ BN and i ∈ J1;NK, the
graph Γ(f) contains an arc from x to Ff (x, i). Each arc (x, Ff (x, i)) is labelled
with i.

Running Example. Let us consider for instance N = 3. Let f∗ : B3 → B3 be
defined by f∗(x1, x2, x3) = (x2⊕x3, x1x3 +x1x2, x1x3 +x1x2). The iteration graph
Γ(f∗) of this function is given in Figure 1.

Let us finally recall the pseudorandom number generator χ14Secrypt [?] formal-
ized in Algorithm 1. It is based on random walks in Γ(f). More precisely, let be
given a Boolean map f : BN → BN, an input PRNG Random, an integer b that
corresponds to a number of iterations, and an initial configuration x0. Starting
from x0, the algorithm repeats b times a random choice of which edge to follow
and traverses this edge. The final configuration is thus outputted.

4 TITLE WILL BE SET BY THE PUBLISHER

0001

001

3

010
2

3

2

101

1 2

011

3

110

1

2

3

1

100

1

3 2

3

1 1112

2 1

3

1

2
3

Figure 1. Iteration Graph Γ(f∗) of the function f∗

Input: a function f , an iteration number b, an initial configuration x0 (N bits)
Output: a configuration x (N bits)
x← x0;
for i = 0, . . . , b− 1 do

s← Random(N);
x← Ff (x, s);

end
return x;

Algorithm 1: Pseudo Code of the χ14Secrypt PRNG

With all this material, we can study the chaos properties of these function. This
is the aims of the next section.

3. Proof Of Chaos

Let us us first recall the chaos theoretical context presented in [?]. In this
article, the space of interest is BN × J1;NKN and the iteration function Hf is the
map from BN × J1;NKN to itself defined by

Hf (x, s) = (Ff (x, s0), σ(s)).

In this definition, σ : J1;NKN −→ J1;NKN is a shift operation on sequences (i.e., a
function that removes the first element of the sequence) formally defined with

σ((uk)k∈N) = (uk+1)k∈N.

We have proven [?, Theorem 1] that Hf is chaotic in BN× J1;NKN if and only if
Γ(f) is strongly connected. However, the corrolary which would say that χ14Secrypt
is chaotic cannot be directly deduced since we do not output all the successive

TITLE WILL BE SET BY THE PUBLISHER 5

values of iterating Ff . Only a a few of them is concerned and any subsequence of
a chaotic sequence is not necessarily a chaotic sequence too. This necessitates a
rigorous proof, which is the aim of this section.

3.1. Devaney’s Chaotic Dynamical Systems

Consider a topological space (X , τ) and a continuous function f : X → X .

Definition 3.1. The function f is said to be topologically transitive if, for any
pair of open sets U, V ⊂ X , there exists k > 0 such that fk(U) ∩ V 6= ∅.

Definition 3.2. An element x is a periodic point for f of period n ∈ N∗ if
fn(x) = x.

Definition 3.3. f is said to be regular on (X , τ) if the set of periodic points for
f is dense in X : for any point x in X , any neighborhood of x contains at least one
periodic point (without necessarily the same period).

Definition 3.4 (Devaney’s formulation of chaos [?]). The function f is said to be
chaotic on (X , τ) if f is regular and topologically transitive.

The chaos property is strongly linked to the notion of “sensitivity”, defined on
a metric space (X , d) by:

Definition 3.5. The function f has sensitive dependence on initial conditions if
there exists δ > 0 such that, for any x ∈ X and any neighborhood V of x, there
exist y ∈ V and n > 0 such that d (fn(x), fn(y)) > δ.

The constant δ is called the constant of sensitivity of f .

Indeed, Banks et al. have proven in [?] that when f is chaotic and (X , d) is a
metric space, then f has the property of sensitive dependence on initial conditions
(this property was formerly an element of the definition of chaos).

3.2. A Metric Space for PRNG Iterations

Let us first introduce P ⊂ N a finite nonempty set having the cardinality
p ∈ N∗. Intuitively, this is the set of authorized numbers of iterations. Denote by
p1, p2, . . . , pp the ordered elements of P: P = {p1, p2, . . . , pp} and p1 < p2 < . . . <
pp. In our algorithm, p is 1 and p1 is b.

The Algorithm 1 may be seen as b functional composition of Ff . However, it
can be generalized with pi, pi ∈ P, functional compositions of Ff . Thus, for any
pi ∈ P we introduce the function Ff,pi

: BN × J1,NKpi → BN defined by

Ff,pi
(x, (u0, u1, . . . , upi−1)) 7→ Ff (. . . (Ff (Ff (x, u0), u1), . . .), upi−1).

The considered space is XN,P = BN × SN,P , where SN,P = J1,NKN × PN. Each
element in this space is a pair where the first element is N-uple in BN, as in
the previous space. The second element is a pair ((uk)k∈N, (v

k)k∈N) of infinite

6 TITLE WILL BE SET BY THE PUBLISHER

sequences. The sequence (vk)k∈N defines how many iterations are executed at
time k between two outputs. The sequence (uk)k∈N defines which elements is
modified.

Let us define the shift function Σ for any element of SN,P .

Σ : SN,P −→ SN,P(
(uk)k∈N, (v

k)k∈N
)
7−→

(
σv0 (

(uk)k∈N
)
, σ
(
(vk)k∈N

))
.

In other words, Σ receives two sequences u and v, and it operates v0 shifts on the
first sequence and a single shift on the second one. Let

Gf : XN,P −→ XN,P

(e, (u, v)) 7−→
(
Ff,v0

(
e, (u0, . . . , uv

0−1
)
,Σ(u, v)

)
.

(2)

Then the outputs (y0, y1, . . .) produced by the CIPRNG2
f (u, v) generator are the

first components of the iterations X0 = (x0, (u, v)) and ∀n ∈ N, Xn+1 = Gf (Xn)
on XN,P .

3.3. A metric on XN,P

We define a distance d on XN,P as follows. Consider x = (e, s) and x̌ = (ě, š) in
XN,P = BN × SN,P , where s = (u, v) and š = (ǔ, v̌) are in SN,P = SJ1,NK × SP .

• e and ě are integers belonging in J0, 2N−1K. The Hamming distance on
their binary decomposition, that is, the number of dissimilar binary digits,
constitutes the integral part of d(X, X̌).
• The fractional part is constituted by the differences between v0 and v̌0,

followed by the differences between finite sequences u0, u1, . . . , uv
0−1 and

ǔ0, ǔ1, . . . , ǔv̌
0−1, followed by differences between v1 and v̌1, followed by

the differences between uv
0

, uv
0+1, . . . , uv

1−1 and ǔv̌
0

, ǔv̌
0+1, . . . , ǔv̌

1−1,
etc. More precisely, let p = blog10 (maxP)c+ 1 and n = blog10 (N)c+ 1.
– The p first digits of d(x, x̌) is |v0− v̌0| written in decimal numeration

(and with p digits).
– The next n×max (P) digits aim at measuring how much u0, u1, . . . , uv

0−1

differs from ǔ0, ǔ1, . . . , ǔv̌
0−1. The n first digits are |u0 − ǔ0|. They

are followed by |u1 − ǔ1| written with n digits, etc.
∗ If v0 = v̌0, then the process is continued until |uv0−1 − ǔv̌0−1|

and the fractional part of d(X, X̌) is completed by 0’s until
reaching p+ n×max (P) digits.

∗ If v0 < v̌0, then the max (P) blocs of n digits are |u0 − ǔ0|,
..., |uv0−1 − ǔv0−1|, ǔv0

(on n digits), ..., ǔv̌
0−1 (on n digits),

followed by 0’s if required.
∗ The case v0 > v̌0 is dealt similarly.

– The next p digits are |v1 − v̌1|, etc.

TITLE WILL BE SET BY THE PUBLISHER 7

Running Example. Consider for instance that N = 13, P = {1, 2, 11} (so p =

3), and that s =

{
u = 6, 11, 5, ...
v = 1, 2, ...

while š =

{
ǔ = 6, 4 1, ...
v̌ = 2, 1, ...

.

So dSN,P (s, š) = 0.010004000000000000000000011005... Indeed, the p = 2 first
digits are 01, as |v0 − v̌0| = 1, and we use p digits to code this difference (P being
{1, 2, 11}, this difference can be equal to 10). We then take the v0 = 1 first terms
of u, each term being coded in n = 2 digits, that is, 06. As we can iterate at most
max (P) times, we must complete this value by some 0’s in such a way that the
obtained result has n × max (P) = 22 digits, that is: 0600000000000000000000.
Similarly, the v̌0 = 2 first terms in ǔ are represented by 0604000000000000000000,
and the absolute value of their difference is equal to 0004000000000000000000.
These digits are concatenated to 01, and we start again with the remainder of the
sequences.

Running Example. Consider now that N = 9, and P = {2, 7}, and that

s =

{
u = 6, 7, 4, 2,...
v = 2, 2, ...

while š =

{
ǔ = 4, 9, 6, 3, 6, 6, 7, 9, 8, ...
v̌ = 7, 2, ...

So dSN,P (s, š) = 0.5173633305600000..., as |v0− v̌0| = 5, |4963667− 6700000| =
1736333, |v1 − v̌1| = 0, and |9800000− 4200000| = 5600000.

d can be more rigorously written as follows:

d(x, x̌) = dSN,P (s, š) + dBN(e, ě),

where:
• dBN is the Hamming distance,
• ∀s = (u, v), š = (ǔ, v̌) ∈ SN,P ,

dSN,P (s, š) =
∑∞

k=0

1

10(k+1)p+knmax (P)

(
|vk − v̌k|

+

∣∣∣∣∣∑vk−1
l=0

u
∑k−1

m=0 vm+l

10(l+1)n
−
∑v̌k−1

l=0

ǔ
∑k−1

m=0 v̌m+l

10(l+1)n

∣∣∣∣∣
)

Let us show that,

Proposition 3.6. d is a distance on XN,P .

Proof. dBN is the Hamming distance. We will prove that dSN,P is a distance too,
thus d will also be a distance, being the sum of two distances.

• Obviously, dSN,P (s, š) > 0, and if s = š, then dSN,P (s, š) = 0. Conversely,
if dSN,P (s, š) = 0, then ∀k ∈ N, vk = v̌k due to the definition of d. Then,
as digits between positions p + 1 and p + n are null and correspond to
|u0 − ǔ0|, we can conclude that u0 = ǔ0. An extension of this result to
the whole first n × max (P) bloc leads to ui = ǔi, ∀i 6 v0 = v̌0, and by
checking all the n×max (P) blocs, u = ǔ.

• dSN,P is clearly symmetric (dSN,P (s, š) = dSN,P (š, s)).
• The triangle inequality is obtained because the absolute value satisfies it

too.

8 TITLE WILL BE SET BY THE PUBLISHER

�

Before being able to study the topological behavior of the general chaotic iter-
ations, we must first establish that:

Proposition 3.7. For all f : BN −→ BN, the function Gf is continuous on (X , d).

Proof. We will show this result by using the sequential continuity. Consider a
sequence xn = (en, (un, vn)) ∈ XNN,P such that d(xn, x) −→ 0, for some x =

(e, (u, v)) ∈ XN,P . We will show that d (Gf (xn), Gf (x)) −→ 0. Remark that u and
v are sequences of sequences.

As d(xn, x) −→ 0, there exists n0 ∈ N such that d(xn, x) < 10−(p+nmax (P))

(its p + nmax (P) first digits are null). In particular, ∀n > n0, e
n = e, as the

Hamming distance between the integral parts of x and x̌ is 0. Similarly, due to the
nullity of the p+ nmax (P) first digits of d(xn, x), we can conclude that ∀n > n0,
(vn)0 = v0, and that ∀n > n0, (un)0 = u0, (un)1 = u1, ..., (un)v

0−1 = uv
0−1. This

implies that:
• Gf (xn)1 = Gf (x)1: they have the same Boolean vector as first coordinate.
• dSN,P (Σ(un, vn); Σ(u, v)) = 10p+nmax (P)dSN,P ((un, vn); (u, v)). As the right

part of the equality tends to 0, we can deduce that it is the case too for
the left part of the equality, and so Gf (xn)2 is convergent to Gf (x)2.

�

3.4. ΓP(f) as an extension of Γ(f)

Let P = {p1, p2, . . . , pp}. We define the directed graph ΓP(f) as follows.
• Its vertices are the 2N elements of BN.

• Each vertex has
p∑

i=1

Npi arrows, namely all the p1, p2, . . . , pp tuples having

their elements in J1,NK.
• There is an arc labeled u0, . . . , upi−1, i ∈ J1, pK between vertices x and y

if and only if y = Ff,pi
(x, (u0, . . . , upi−1)).

It is not hard to see that the graph Γ{1}(f) is Γ(f).

Running Example. Consider for instance N = 2, Let f0 : B2 −→ B2 be the
negation function, i.e., f0(x1, x2) = (x1, x2), and consider P = {2, 3}. The graphs
of iterations are given in Figure 2. The Figure 2a shows what happens when
displaying each iteration result. On the contrary, the Figure 2b explicits the
behaviors when always applying 2 or 3 modification and next outputing results.
Notice that here, orientations of arcs are not necessary since the function f0 is
equal to its inverse f−1

0 .

3.5. Proofs of chaos

We will show that,

TITLE WILL BE SET BY THE PUBLISHER 9

00 01

10 11

2

1

2

1

(a) Γ(f0)

00

11,22

01

11,22

112,121

211,222

10

11,22

112,121

111122

212 221

11,22

11

211,222

111122

212 221

12

21

12

21

(b) Γ{2,3}(f0)

Figure 2. Iterating f0 : (x1, x2) 7→ (x1, x2)

Proposition 3.8. ΓP(f) is strongly connected if and only if Gf is topologically
transitive on (XN,P , d).

Proof. Suppose that ΓP(f) is strongly connected. Let x = (e, (u, v)), x̌ = (ě, (ǔ, v̌)) ∈
XN,P and ε > 0. We will find a point y in the open ball B(x, ε) and n0 ∈ N such
that Gn0

f (y) = x̌: this strong transitivity will imply the transitivity property. We
can suppose that ε < 1 without loss of generality.

Let us denote by (E, (U, V)) the elements of y. As y must be in B(x, ε) and
ε < 1, E must be equal to e. Let k = blog10(ε)c+ 1. dSN,P ((u, v), (U, V)) must be
lower than ε, so the k first digits of the fractional part of dSN,P ((u, v), (U, V)) are
null. Let k1 the smallest integer such that, if V 0 = v0, ..., V k1 = vk1 , U0 = u0, ...,
U

∑k1
l=0 V l−1 = u

∑k1
l=0 vl−1. Then dSN,P ((u, v), (U, V)) < ε. In other words, any y of

the form (e, ((u0, ..., u
∑k1

l=0 vl−1), (v0, ..., vk1)) is in B(x, ε).
Let y0 such a point and z = Gk1

f (y0) = (e′, (u′, v′)). ΓP(f) being strongly
connected, there is a path between e′ and ě. Denote by a0, . . . , ak2

the edges
visited by this path. We denote by V k1 = |a0| (number of terms in the finite
sequence a1), V k1+1 = |a1|, ..., V k1+k2 = |ak2

|, and by Uk1 = a0
0, Uk1+1 = a1

0, ...,
Uk1+Vk1

−1 = a
Vk1
−1

0 , Uk1+Vk1 = a0
1, Uk1+Vk1

+1 = a1
1,...

Let y = (e, ((u0, ..., u
∑k1

l=0 vl−1, a0
0, ..., a

|a0|
0 , a0

1, ..., a
|a1|
1 , ..., a0

k2
, ..., a

|ak2
|

k2
,

ǔ0, ǔ1, ...), (v0, ..., vk1 , |a0|, ..., |ak2
|, v̌0, v̌1, ...))). So y ∈ B(x, ε) and Gk1+k2

f (y) = x̌.
Conversely, if ΓP(f) is not strongly connected, then there are 2 vertices e1 and

e2 such that there is no path between e1 and e2. That is, it is impossible to find
(u, v) ∈ SN,P and nN such that Gn

f (e, (u, v))1 = e2. The open ball B(e2, 1/2)
cannot be reached from any neighborhood of e1, and thus Gf is not transitive. �

We show now that,

Proposition 3.9. If ΓP(f) is strongly connected, then Gf is regular on (XN,P , d).

10 TITLE WILL BE SET BY THE PUBLISHER

Proof. Let x = (e, (u, v)) ∈ XN,P and ε > 0. As in the proofs of Prop. 3.8, let
k1 ∈ N such that{

(e, ((u0, ..., uv
k1−1

, U0, U1, ...), (v0, ..., vk1 , V 0, V 1, ...)) |

∀i, j ∈ N, U i ∈ J1,NK, V j ∈ P
}
⊂ B(x, ε),

and y = Gk1

f (e, (u, v)). ΓP(f) being strongly connected, there is at least a path
from the Boolean state y1 of y and e. Denote by a0, . . . , ak2 the edges of such a
path. Then the point:

(e, ((u0, ..., uv
k1−1

, a0
0, ..., a

|a0|
0 , a0

1, ..., a
|a1|
1 , ..., a0

k2
, ..., a

|ak2
|

k2
, u0, ..., uv

k1−1

,

a0
0, ..., a

|ak2
|

k2
...), (v0, ..., vk1 , |a0|, ..., |ak2

|, v0, ..., vk1 , |a0|, ..., |ak2
|, ...))

is a periodic point in the neighborhood B(x, ε) of x. �

Gf being topologically transitive and regular, we can thus conclude that

Theorem 3.10. The function Gf is chaotic on (XN,P , d) if and only if its iteration
graph ΓP(f) is strongly connected.

Corollary 3.11. The pseudorandom number generator χ14Secrypt is not chaotic
on (XN,{b}, d) for the negation function.

Proof. In this context, P is the singleton {b}. If b is even, any vertex e of Γ{b}(f0)
cannot reach its neighborhood and thus Γ{b}(f0) is not strongly connected. If b is
even, any vertex e of Γ{b}(f0) cannot reach itself and thus Γ{b}(f0) is not strongly
connected. �

The next section shows how to generate functions and a iteration number b such
that Γ{b} is strongly connected.

4. Functions with Strongly Connected Γ{b}(f)

First of all, let f : BN → BN. It has been shown [?, Theorem 4] that if its
iteration graph Γ(f) is strongly connected, then the output of χ14Secrypt follows
a law that tends to the uniform distribution if and only if its Markov matrix is a
doubly stochastic matrix.

In [?, Section 4], we have presented an efficient approach which generates func-
tion with strongly connected iteration graph Γ(f) and with doubly stochastic
Markov probability matrix.

Basically, let consider the N-cube. Let us next remove one Hamiltonian cycle
in this one. When an edge (x, y) is removed, an edge (x, x) is added.

Running Example. For instance, the iteration graph Γ(f∗) (given in Figure 1) is
the 3-cube in which the Hamiltonian cycle 000, 100, 101, 001, 011, 111, 110, 010, 000
has been removed.

TITLE WILL BE SET BY THE PUBLISHER 11

We first have proven the following result, which states that the N-cube without
one Hamiltonian cycle has the awaited property with regard to the connectivity.

Theorem 4.1. The iteration graph Γ(f) issued from the N-cube where an Hamil-
tonian cycle is removed is strongly connected.

Moreover, if all the transitions have the same probability (1
n), we have proven

the following results:

Theorem 4.2. The Markov Matrix M resulting from the N-cube in which an
Hamiltonian cycle is removed, is doubly stochastic.

Let us consider now a N-cube where an Hamiltonian cycle is removed. Let f be
the corresponding function. The question which remains to solve is can we always
find b such that Γ{b}(f) is strongly connected.

The answer is indeed positive. We furtheremore have the following strongest
result.

Theorem 4.3. There exist b ∈ N such that Γ{b}(f) is complete.

Proof. There is an arc (x, y) in the graph Γ{b}(f) if and only if M b
xy is positive

where M is the Markov matrix of Γ(f). It has been shown in [?, Lemma 3] that
M is regular. There exists thus b such there is an arc between any x and y. �

The next section presents how to build hamiltonian cycles in the N-cube with
the objective to embed them into the pseudorandom number generator.

5. (Locally) Balanced Hamiltonian Cycle

Many approaches have been developed to solve the problem of building a Gray
code in a N cube [?,?,?,?], according to properties the produced code has to verify.
For instance, [?, ?] focus on balanced Gray codes. In the transition sequence of
these codes, the number of transitions of each element must differ at most by
2. This uniformity is a global property on the cycle, i.e. a property that is
established while traversing the whole cycle. On the opposite side, when the
objective is to follow a subpart of the Gray code and to switch each element
approximately the same amount of times, local properties are wished. For instance,
the locally balanced property is studied in [?] and an algorithm that establishes
locally balanced Gray codes is given.

The current context is to provide a function f : BN → BN by removing a
Hamiltonian cycle in the N cube. Such a function is going to be iterated b time
to produce a pseudo random number, i.e. a vertex in the N cube. Obviously,
the number of iterations b has to be sufficiently large to provide a uniform output
distribution. To reduced the number of iterations, the provided Gray code should
ideally possess the both balanced and locally balanced properties. However, none
of the two algorithms is compatible with the second one: balanced Gray codes that
are generated by state of the art works [?,?] are not locally balanced. Conversely,
locally balanced Gray codes yielded by Igor Bykov approach [?] are not globally

12 TITLE WILL BE SET BY THE PUBLISHER

balanced. This section thus shows how the non deterministic approach presented
in [?] has been automatized to provide balanced Hamiltonian paths such that, for
each subpart, the number of switches of each element is as uniform as possible.

5.1. Analysis of the Robinson-Cohn extension algorithm

As far as we know three works, namely [?], [?], and [?] have adressed the probem
of providing an approach to produce balanced gray code. The authors of [?] intro-
duced an inductive approach aiming at producing balanced Gray codes, provided
the user gives a special subsequence of the transition sequence at each induction
step. This work have been strengthened in [?] where the authors have explicitely
shown how to construct such a subsequence. Finally the authors of [?] have pre-
sented the Robinson-Cohn extension algorithm. There rigourous presentation of
this one have mainly allowed them to prove two properties. The former states
that if N is a 2-power, a balanced Gray code is always totally balanced. The latter
states that for every N there exists a Gray code such that all transition count
numbers are are 2-powers whose exponents are either equal or differ from each
other by 1. However, the authors do not prove that the approach allows to build
(totally balanced) Gray code. What follows shows that this fact is established and
first recalls the approach.

Let be given a N − 2-bit Gray code whose transition sequence is SN−2. What
follows is the Robinson-Cohn extension method [?] which produces a n-bits Gray
code.

(1) Let l be an even positive integer. Find u1, u2, . . . , ul−2, v (maybe empty)
subsequences of SN−2 such that SN−2 is the concatenation of

si1 , u0, si2 , u1, si3 , u2, ..., sil−1, ul−2, sil , v

where i1 = 1, i2 = 2, and u0 = ∅ (the empty sequence).
(2) Replace in SN−2 the sequences u0, u1, u2, . . . , ul−2 by N − 1, u′(u1,N −

1,N), u′(u2,N,N − 1), u′(u3,N − 1,N), . . . , u′(ul−2,N,N − 1) respectively,
where u′(u, x, y) is the sequence u, x, uR, y, u such that uR is u in reversed
order. The obtained sequence is further denoted as U .

(3) Construct the sequences V = vR,N, v, W = N− 1, SN−2,N, and let W ′ be
W where the first two elements have been exchanged.

(4) The transition sequence SN is thus the concatenation UR, V,W ′.
It has been proven in [?] that SN is transition sequence of a cyclic N-bits Gray

code if SN−2 is. However, the step (1) is not a constructive step that precises how
to select the subsequences which ensures that yielded Gray code is balanced. Next
section shows how to choose the sequence l to have the balancy property.

5.2. Balanced Codes

Let us first recall how to formalize the balancy property of a Gray code. Let
L = w1, w2, . . . , w2N be the sequence of a N-bits cyclic Gray code. The transition

