]> AND Private Git Repository - 16dcc.git/blobdiff - stopping.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modif abstract
[16dcc.git] / stopping.tex
index fb0b9e0dec27c2dc2215ea2e80b7304e0a034f91..284fc49e57b604847b7ebed6b8be603ece7f5b87 100644 (file)
@@ -33,7 +33,7 @@ P=\dfrac{1}{6} \left(
 0&0&0&0&1&0&4&1 \\
 0&0&0&1&0&1&0&4 
 \end{array}
-\right)
+\right).
 \]
 \end{xpl}
 
@@ -65,13 +65,18 @@ distribution induced by the $X$-th row of $P$. If the Markov chain induced by
 $P$ has a stationary distribution $\pi$, then we define
 $$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}.$$
 
+\ANNOT{incohérence de notation $X$ : entier ou dans $B^N$ ?}
 and
 
 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
 
-Intuitively speaking, $t_{\rm mix}$ is a mixing time 
-\textit{i.e.}, is the time until the matrix $X$ of a Markov chain  
-is $\epsilon$-close to a stationary distribution.
+%% Intuitively speaking, $t_{\rm mix}$ is a mixing time 
+%% \textit{i.e.}, is the time until the matrix $X$ of a Markov chain  
+%% is $\epsilon$-close to a stationary distribution.
+
+Intutively speaking,  $t_{\rm mix}(\varepsilon)$ is the time/steps required
+to be sure to be $\varepsilon$-close to the stationary distribution, wherever
+the chain starts. 
 
 
 
@@ -113,9 +118,8 @@ $$\P_X(X_\tau=Y)=\pi(Y).$$
 
 \subsection{Upper bound of Stopping Time}\label{sub:stop:bound}
 
-
 A stopping time $\tau$ is a {\emph strong stationary time} if $X_{\tau}$ is
-independent of $\tau$. 
+independent of $\tau$. The following result will be useful~\cite[Proposition~6.10]{LevinPeresWilmer2006},
 
 
 \begin{thrm}\label{thm-sst}
@@ -231,7 +235,8 @@ This probability is independent of the value of the other bits.
 Moving next in the chain, at each step,
 the $l$-th bit  is switched from $0$ to $1$ or from $1$ to $0$ each time with
 the same probability. Therefore,  for $t\geq \tau_\ell$, the
-$\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the
+$\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability,  and
+independently of the value of the other bits, proving the
 lemma.\end{proof}
 
 \begin{thrm} \label{prop:stop}
@@ -244,7 +249,12 @@ let $S_{X,\ell}$ be the
 random variable that counts the number of steps 
 from $X$ until we reach a configuration where
 $\ell$ is fair. More formally
-$$S_{X,\ell}=\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.)\text{ and } X_0=X\}.$$
+\[
+\begin{array}{rcl}
+S_{X,\ell}&=&\min \{t \geq 1\mid h(X_{t-1})\neq \ell\text{ and }Z_t=(\ell,.) \\
+&& \qquad \text{ and } X_0=X\}.
+\end{array}
+\]
 
 %  We denote by
 % $$\lambda_h=\max_{X,\ell} S_{X,\ell}.$$
@@ -291,8 +301,14 @@ has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq
 since $S_{X,\ell}$ is positive, it is known~\cite[lemma 2.9]{proba}, that
 $$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i).$$
 Since $\P(S_{X,\ell}\geq i)\geq \P(S_{X,\ell}\geq i+1)$, one has
-$$E[S_{X,\ell}]=\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\leq
-\P(S_{X,\ell}\geq 1)+\P(S_{X,\ell}\geq 2)+2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).$$
+\[
+\begin{array}{rcl}
+  E[S_{X,\ell}]&=&\sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq i)\\
+&\leq& 
+\P(S_{X,\ell}\geq 1) +\P(S_{X,\ell}\geq 2)\\
+&& \qquad +2 \sum_{i=1}^{+\infty}\P(S_{X,\ell}\geq 2i).
+\end{array}
+\]
 Consequently,
 $$E[S_{X,\ell}]\leq 1+1+2
 \sum_{i=1}^{+\infty}\left(1-\frac{1}{4{\mathsf{N}}^2}\right)^i=2+2(4{\mathsf{N}}^2-1)=8{\mathsf{N}}^2,$$
@@ -345,7 +361,7 @@ direct application of lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.
 \end{proof}
 
 Now using Markov Inequality, one has $\P_X(\tau > t)\leq \frac{E[\tau]}{t}$.
-With $t=32N^2+16N\ln (N+1)$, one obtains:  $\P_X(\tau > t)\leq \frac{1}{4}$. 
+With $t_n=32N^2+16N\ln (N+1)$, one obtains:  $\P_X(\tau > t_n)\leq \frac{1}{4}$. 
 Therefore, using the defintion of $t_{\rm mix)}$ and
 Theorem~\ref{thm-sst}, it follows that
 $t_{\rm mix}\leq 32N^2+16N\ln (N+1)=O(N^2)$.
@@ -354,11 +370,11 @@ $t_{\rm mix}\leq 32N^2+16N\ln (N+1)=O(N^2)$.
 Notice that the calculus of the stationary time upper bound is obtained
 under the following constraint: for each vertex in the $\mathsf{N}$-cube 
 there are one ongoing arc and one outgoing arc that are removed. 
-The calculus does not consider (balanced) Hamiltonian cycles, which 
+The calculus doesn't consider (balanced) Hamiltonian cycles, which 
 are more regular and more binding than this constraint.
 Moreover, the bound
-is obtained using Markov Inequality which is frequently coarse. For the
-classical random walkin the  $\mathsf{N}$-cube, without removing any
+is obtained using the coarse Markov Inequality. For the
+classical (lazzy) random walk the  $\mathsf{N}$-cube, without removing any
 Hamiltonian cylce, the mixing time is in $\Theta(N\ln N)$. 
 We conjecture that in our context, the mixing time is also in $\Theta(N\ln
 N)$.
@@ -376,12 +392,6 @@ number of iterations such that all elements $\ell\in \llbracket 1,{\mathsf{N}} \
 by calling this code many times with many instances of function and many 
 seeds.
 
-Practically speaking, for each number $\mathsf{N}$,$ 3 \le \mathsf{N} \le 16$, 
-10 functions have been generaed according to method presented in section~\ref{sec:hamilton}. For each of them, the calculus of the approximation of $E[\ts]$
-is executed 10000 times with a random seed. The table~\ref{table:stopping:moy}
-summarizes results. It can be observed that the approximation is largely
-wœsmaller than the upper bound given in theorem~\ref{prop:stop}.
-
 \begin{algorithm}[ht]
 %\begin{scriptsize}
 \KwIn{a function $f$, an initial configuration $x^0$ ($\mathsf{N}$ bits)}
@@ -389,39 +399,59 @@ wœsmaller than the upper bound given in theorem~\ref{prop:stop}.
 
 $\textit{nbit} \leftarrow 0$\;
 $x\leftarrow x^0$\;
-$\textit{visited}\leftarrow\emptyset$\;
-
-\While{$\left\vert{\textit{visited}}\right\vert < \mathsf{N} $}
+$\textit{fair}\leftarrow\emptyset$\;
+\While{$\left\vert{\textit{fair}}\right\vert < \mathsf{N} $}
 {
-        $ s \leftarrow \textit{Random}(n)$ \;
+        $ s \leftarrow \textit{Random}(\mathsf{N})$ \;
         $\textit{image} \leftarrow f(x) $\;
-        \If{$x[s] \neq \textit{image}[s]$}{
-            $\textit{visited} \leftarrow \textit{visited} \cup \{s\}$
+        \If{$\textit{Random}(1) \neq 0$ and $x[s] \neq \textit{image}[s]$}{
+            $\textit{fair} \leftarrow \textit{fair} \cup \{s\}$\;
+            $x[s] \leftarrow \textit{image}[s]$\;
           }
-        $x[s] \leftarrow \textit{image}[s]$\;
         $\textit{nbit} \leftarrow \textit{nbit}+1$\;
 }
 \Return{$\textit{nbit}$}\;
 %\end{scriptsize}
-\caption{Pseudo Code of the stoping time calculus}
+\caption{Pseudo Code of stoping time calculus }
 \label{algo:stop}
 \end{algorithm}
 
+Practically speaking, for each number $\mathsf{N}$, $ 3 \le \mathsf{N} \le 16$, 
+10 functions have been generated according to method presented in section~\ref{sec:hamilton}. For each of them, the calculus of the approximation of $E[\ts]$
+is executed 10000 times with a random seed. The Figure~\ref{fig:stopping:moy}
+summarizes these results. In this one, a circle represents the 
+approximation of $E[\ts]$ for a given $\mathsf{N}$.
+The line is the graph of the function $x \mapsto 2x\ln(2x+8)$. 
+It can firstly 
+be observed that the approximation is largely
+smaller than the upper bound given in theorem~\ref{prop:stop}.
+It can be further deduced  that the conjecture of the previous section 
+is realistic according the graph of $x \mapsto 2x\ln(2x+8)$.
 
 
 
-\begin{table}
-$$
-\begin{array}{|*{15}{l|}}
-\hline
-\mathsf{N}  & 3 & 4 & 5 & 6 & 7& 8 & 9 & 10& 11 & 12 & 13 & 14 & 15 & 16 \\
-\hline
-\mathsf{N}  & 3 & 10.9 & 5 & 17.7 & 7& 25 & 9 & 32.7& 11 & 40.8 & 13 & 49.2 & 15 & 16 \\
-\hline
-\end{array}
-$$
-\caption{Average Stopping Time}\label{table:stopping:moy}
-\end{table}
+
+
+% \begin{table}
+% $$
+% \begin{array}{|*{14}{l|}}
+% \hline
+% \mathsf{N}  & 4 & 5 & 6 & 7& 8 & 9 & 10& 11 & 12 & 13 & 14 & 15 & 16 \\
+% \hline
+% \mathsf{N}  & 21.8 & 28.4 & 35.4 & 42.5 & 50 & 57.7 & 65.6& 73.5 & 81.6 & 90 & 98.3 & 107.1 & 115.7 \\
+% \hline
+% \end{array}
+% $$
+% \caption{Average Stopping Time}\label{table:stopping:moy}
+% \end{table}
+
+\begin{figure}
+\centering
+\includegraphics[width=0.49\textwidth]{complexity}
+\caption{Average Stopping Time Approximation}\label{fig:stopping:moy}
+\end{figure}
+
+
 
 %%% Local Variables:
 %%% mode: latex