Many approaches have been developed to solve the problem of building
-a Gray code in a $\mathsf{N}$ cube~\cite{}, according to properties
+a Gray code in a $\mathsf{N}$-cube~\cite{Robinson:1981:CS,DBLP:journals/combinatorics/BhatS96,ZanSup04,Bykov2016}, according to properties
the produced code has to verify.
-For instance,~\cite{ZanSup04,DBLP:journals/combinatorics/BhatS96} focus on
+For instance,~\cite{DBLP:journals/combinatorics/BhatS96,ZanSup04} focus on
balanced Gray codes. In the transition sequence of these codes,
the number of transitions of each element must differ
at most by 2.
-This uniformity is a global property on the cycle, \textit{i.e.}
+This uniformity is a global property on the cycle, \textit{i.e.},
a property that is established while traversing the whole cycle.
-On the opposite side, when the objective is to follow a subpart
+On the other hand, when the objective is to follow a subpart
of the Gray code and to switch each element approximately the
same amount of times,
local properties are wished.
and an algorithm that establishes locally balanced Gray codes is given.
The current context is to provide a function
-$f:\Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ by removing a Hamiltonian
-cycle in the $\mathsf{N}$ cube. Such a function is going to be iterated
-$b$ time to produce a pseudo random number, \textit{i.e.} a vertex in the
-$\mathsf{N}$ cube.
+$f:\Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ by removing an Hamiltonian
+cycle in the $\mathsf{N}$-cube. Such a function is going to be iterated
+$b$ times to produce a pseudorandom number,
+\textit{i.e.}, a vertex in the
+$\mathsf{N}$-cube.
Obviously, the number of iterations $b$ has to be sufficiently large
to provide a uniform output distribution.
-To reduced the number of iterations, the provided Gray code
-should ideally possess the both balanced and locally balanced properties.
-However, none of the two algorithms is compatible with the second one:
+To reduce the number of iterations, it can be claimed
+that the provided Gray code
+should ideally possess both balanced and locally balanced properties.
+However, both algorithms are incompatible with the second one:
balanced Gray codes that are generated by state of the art works~\cite{ZanSup04,DBLP:journals/combinatorics/BhatS96} are not locally balanced. Conversely,
locally balanced Gray codes yielded by Igor Bykov approach~\cite{Bykov2016}
are not globally balanced.
-This section thus show how the non deterministic approach
+This section thus shows how the non deterministic approach
presented in~\cite{ZanSup04} has been automatized to provide balanced
Hamiltonian paths such that, for each subpart,
-the number of swiches of each element is as constant as possible.
+the number of switches of each element is as uniform as possible.
+\subsection{Analysis of the Robinson-Cohn extension algorithm}
+As far as we know three works,
+namely~\cite{Robinson:1981:CS},~\cite{DBLP:journals/combinatorics/BhatS96},
+and~\cite{ZanSup04} have addressed the problem of providing an approach
+to produce balanced gray code.
+The authors of~\cite{Robinson:1981:CS} introduced an inductive approach
+aiming at producing balanced Gray codes, assuming the user gives
+a special subsequence of the transition sequence at each induction step.
+This work has been strengthened in~\cite{DBLP:journals/combinatorics/BhatS96}
+where the authors have explicitly shown how to build such a subsequence.
+Finally the authors of~\cite{ZanSup04} have presented
+the \emph{Robinson-Cohn extension}
+algorithm. Their rigorous presentation of this algorithm
+has mainly allowed them to prove two properties.
+The former states that if
+$\mathsf{N}$ is a 2-power, a balanced Gray code is always totally balanced.
+The latter states that for every $\mathsf{N}$ there
+exists a Gray code such that all transition count numbers
+are 2-powers whose exponents are either equal
+or differ from each other by 1.
+However, the authors do not prove that the approach allows to build
+(totally balanced) Gray codes.
+What follows shows that this fact is established and first recalls the approach.
+
+Let be given a $\mathsf{N}-2$-bit Gray code whose transition sequence is
+$S_{\mathsf{N}-2}$. What follows is the
+ \emph{Robinson-Cohn extension} method~\cite{ZanSup04}
+which produces a $\mathsf{N}$-bits Gray code.
+
+\begin{enumerate}
+\item \label{item:nondet}Let $l$ be an even positive integer. Find
+$u_1, u_2, \dots , u_{l-2}, v$ (maybe empty) subsequences of $S_{\mathsf{N}-2}$
+such that $S_{\mathsf{N}-2}$ is the concatenation of
+$$
+s_{i_1}, u_0, s_{i_2}, u_1, s_{i_3}, u_2, \dots , s_{i_l-1}, u_{l-2}, s_{i_l}, v
+$$
+where $i_1 = 1$, $i_2 = 2$, and $u_0 = \emptyset$ (the empty sequence).
+\item\label{item:u'}Replace in $S_{\mathsf{N}-2}$ the sequences $u_0, u_1, u_2, \ldots, u_{l-2}$
+ by
+ $\mathsf{N} - 1, u'(u_1,\mathsf{N} - 1, \mathsf{N}) , u'(u_2,\mathsf{N}, \mathsf{N} - 1), u'(u_3,\mathsf{N} - 1,\mathsf{N}), \dots, u'(u_{l-2},\mathsf{N}, \mathsf{N} - 1)$
+ respectively, where $u'(u,x,y)$ is the sequence $u,x,u^R,y,u$ such that
+ $u^R$ is $u$ in reversed order.
+ The obtained sequence is further denoted as $U$.
+\item\label{item:VW} Construct the sequences $V=v^R,\mathsf{N},v$, $W=\mathsf{N}-1,S_{\mathsf{N}-2},\mathsf{N}$, and let $W'$ be $W$ where the first
+two elements have been exchanged.
+\item The transition sequence $S_{\mathsf{N}}$ is thus the concatenation $U^R, V, W'$.
+\end{enumerate}
+
+It has been proven in~\cite{ZanSup04} that
+$S_{\mathsf{N}}$ is the transition sequence of a cyclic $\mathsf{N}$-bits Gray code
+if $S_{\mathsf{N}-2}$ is.
+However, step~(\ref{item:nondet}) is not a constructive
+step that precises how to select the subsequences which ensure that
+yielded Gray code is balanced.
+Following sections show how to choose the sequence $l$ to have the balance property.
+
+\subsection{Balanced Codes}
+Let us first recall how to formalize the balance property of a Gray code.
+Let $L = w_1, w_2, \dots, w_{2^\mathsf{N}}$ be the sequence
+of a $\mathsf{N}$-bits cyclic Gray code.
+The transition sequence
+$S = s_1, s_2, \dots, s_{2^n}$, $s_i$, $1 \le i \le 2^\mathsf{N}$,
+indicates which bit position changes between
+codewords at index $i$ and $i+1$ modulo $2^\mathsf{N}$.
+The \emph{transition count} function
+$\textit{TC}_{\mathsf{N}} : \{1,\dots, \mathsf{N}\} \rightarrow \{0, \ldots, 2^{\mathsf{N}}\}$
+gives the number of times $i$ occurs in $S$,
+\textit{i.e.}, the number of times
+the bit $i$ has been switched in $L$.
+
+The Gray code is \emph{totally balanced} if $\textit{TC}_{\mathsf{N}}$
+is constant (and equal to $\frac{2^{\mathsf{N}}}{\mathsf{N}}$).
+It is \emph{balanced} if for any two bit indices $i$ and $j$,
+$|\textit{TC}_{\mathsf{N}}(i) - \textit{TC}_{\mathsf{N}}(j)| \le 2$.
+
+
+
+\begin{xpl}
+Let $L^*=000,100,101,001,011,111,$ $110,010$ be the Gray code that corresponds to
+the Hamiltonian cycle that has been removed in $f^*$.
+Its transition sequence is $S=3,1,3,2,3,1,3,2$ and its transition count function is
+$\textit{TC}_3(1)= \textit{TC}_3(2)=2$ and $\textit{TC}_3(3)=4$. Such a Gray code is balanced.
+
+Let $L^4$ $=0000,0010,0110,1110,1111,0111,0011,0001,0101,0100,1100,1101,1001,1011,1010,1000$
+be a cyclic Gray code. Since $S=2,3,4,1,4,$ $3,2,3,1,4,1,3,2,1,2,4$, $\textit{TC}_4$ is equal to 4 everywhere, this code
+is thus totally balanced.
+
+On the contrary, for the standard $4$-bits Gray code
+$L^{\textit{st}}=0000,0001,0011,
+0010,0110,0111,0101,0100,$ \newline $1100,1101,1111,1110,1010,1011,1001,1000$,
+we have $\textit{TC}_4(1)=8$ $\textit{TC}_4(2)=4$ $\textit{TC}_4(3)=\textit{TC}_4(4)=2$ and
+the code is neither balanced nor totally balanced.
+\end{xpl}
+
+
+\begin{thrm}\label{prop:balanced}
+Let $\mathsf{N}$ in $\Nats^*$, and $a_{\mathsf{N}}$ be defined by
+$a_{\mathsf{N}}= 2 \left\lfloor \dfrac{2^{\mathsf{N}}}{2\mathsf{N}} \right\rfloor$.
+There exists then a sequence $l$ in
+step~(\ref{item:nondet}) of the \emph{Robinson-Cohn extension} algorithm
+such that all the transition counts $\textit{TC}_{\mathsf{N}}(i)$
+are $a_{\mathsf{N}}$ or $a_{\mathsf{N}}+2$
+for any $i$, $1 \le i \le \mathsf{N}$.
+\end{thrm}
+
+
+
+
+
+The proof is done by induction on $\mathsf{N}$. Let us immediately verify
+that it is established for both odd and even smallest values, \textit{i.e.},
+$3$ and $4$.
+For the initial case where $\mathsf{N}=3$, \textit{i.e.}, $\mathsf{N-2}=1$ we successively have: $S_1=1,1$, $l=2$, $u_0 = \emptyset$, and $v=\emptyset$.
+Thus again the algorithm successively produces
+$U= 1,2,1$, $V = 3$, $W= 2, 1, 1,3$, and $W' = 1,2,1,3$.
+Finally, $S_3$ is $1,2,1,3,1,2,1,3$ which obviously verifies the theorem.
+ For the initial case where $\mathsf{N}=4$, \textit{i.e.}, $\mathsf{N-2}=2$
+we successively have: $S_1=1,2,1,2$, $l=4$,
+$u_0,u_1,u_2 = \emptyset,\emptyset,\emptyset$, and $v=\emptyset$.
+Thus again the algorithm successively produces
+$U= 1,3,2,3,4,1,4,3,2$, $V = 4$, $W= 3, 1, 2, 1,2, 4$, and $W' = 1, 3, 2, 1,2, 4 $.
+Finally, $S_4$ is
+$
+2,3,4,1,4,3,2,3,1,4,1,3,2,1,2,4
+$
+such that $\textit{TC}_4(i) = 4$ and the theorem is established for
+odd and even initial values.
+
+
+For the inductive case, let us first define some variables.
+Let $c_{\mathsf{N}}$ (resp. $d_{\mathsf{N}}$) be the number of elements
+whose transition count is exactly $a_{\mathsf{N}}$ (resp $a_{\mathsf{N}} +2$).
+Both of these variables are defined by the system
+
+\[
+\left\{
+\begin{array}{lcl}
+c_{\mathsf{N}} + d_{\mathsf{N}} & = & \mathsf{N} \\
+c_{\mathsf{N}}a_{\mathsf{N}} + d_{\mathsf{N}}(a_{\mathsf{N}}+2) & = & 2^{\mathsf{N}}
+\end{array}
+\right.
+\Leftrightarrow
+\left\{
+\begin{array}{lcl}
+d_{\mathsf{N}} & = & \dfrac{2^{\mathsf{N}} -\mathsf{N}.a_{\mathsf{N}}}{2} \\
+c_{\mathsf{N}} &= &\mathsf{N} - d_{\mathsf{N}}
+\end{array}
+\right.
+\]
+
+Since $a_{\mathsf{N}}$ is even, $d_{\mathsf{N}}$ is an integer.
+Let us first prove that both $c_{\mathsf{N}}$ and $d_{\mathsf{N}}$ are positive
+integers.
+Let $q_{\mathsf{N}}$ and $r_{\mathsf{N}}$, respectively, be
+the quotient and the remainder in the Euclidean division
+of $2^{\mathsf{N}}$ by $2\mathsf{N}$, \textit{i.e.},
+$2^{\mathsf{N}} = q_{\mathsf{N}}.2\mathsf{N} + r_{\mathsf{N}}$, with $0 \le r_{\mathsf{N}} <2\mathsf{N}$.
+First of all, the integer $r$ is even since $r_{\mathsf{N}} = 2^{\mathsf{N}} - q_{\mathsf{N}}.2\mathsf{N}= 2(2^{\mathsf{N}-1} - q_{\mathsf{N}}.\mathsf{N})$.
+Next, $a_{\mathsf{N}}$ is $\frac{2^{\mathsf{N}}-r_{\mathsf{N}}}{\mathsf{N}}$. Consequently
+$d_{\mathsf{N}}$ is $r_{\mathsf{N}}/2$ and is thus a positive integer s.t.
+$0 \le d_{\mathsf{N}} <\mathsf{N}$.
+The proof for $c_{\mathsf{N}}$ is obvious.
+
+
+For any $i$, $1 \le i \le \mathsf{N}$, let $zi_{\mathsf{N}}$ (resp. $ti_{\mathsf{N}}$ and $bi_{\mathsf{N}}$)
+be the occurrence number of element $i$ in the sequence $u_0, \dots, u_{l-2}$
+(resp. in the sequences $s_{i_1}, \dots , s_{i_l}$ and $v$)
+in step (\ref{item:nondet}) of the algorithm.
+
+Due to the definition of $u'$ in step~(\ref{item:u'}),
+$3.zi_{\mathsf{N}} + ti_{\mathsf{N}}$ is the
+ number of element $i$ in the sequence $U$.
+It is clear that the number of element $i$ in the sequence $V$ is
+$2bi_{\mathsf{N}}$ due to step (\ref{item:VW}).
+We thus have the following system:
+$$
+\left\{
+\begin{array}{lcl}
+3.zi_{\mathsf{N}} + ti_{\mathsf{N}} + 2.bi_{\mathsf{N}} + \textit{TC}_{\mathsf{N}-2}(i) &= &\textit{TC}_{\mathsf{N}}(i) \\
+zi_{\mathsf{N}} + ti_{\mathsf{N}} + bi_{\mathsf{N}} & =& \textit{TC}_{\mathsf{N}-2}(i)
+\end{array}
+\right.
+\qquad
+\Leftrightarrow
+$$
+
+\begin{equation}
+\left\{
+\begin{array}{lcl}
+zi_{\mathsf{N}} &= &
+\dfrac{\textit{TC}_{\mathsf{N}}(i) - 2.\textit{TC}_{\mathsf{N}-2}(i) - bi_{\mathsf{N}}}{2}\\
+ti_{\mathsf{N}} &= & \textit{TC}_{\mathsf{N}-2}(i)-zi_{\mathsf{N}}-bi_{\mathsf{N}}
+\end{array}
+\right.
+\label{eq:sys:zt1}
+\end{equation}
+
+In this set of 2 equations with 3 unknown variables, let $b_i$ be set with 0.
+In this case, since $\textit{TC}_{\mathsf{N}}$ is even (equal to $a_{\mathsf{N}}$
+or to $a_{\mathsf{N}}+2$), the variable $zi_{\mathsf{N}}$ is thus an integer.
+Let us now prove that the resulting system has always positive integer
+solutions $z_i$, $t_i$, $0 \le z_i, t_i \le \textit{TC}_{\mathsf{N}-2}(i)$
+and s.t. their sum is equal to $\textit{TC}_{\mathsf{N}-2}(i)$.
+This latter constraint is obviously established if the system has a solution.
+We thus have the following system.
+
+
+
+\begin{equation}
+\left\{
+\begin{array}{lcl}
+zi_{\mathsf{N}} &= &
+\dfrac{\textit{TC}_{\mathsf{N}}(i) - 2.\textit{TC}_{\mathsf{N}-2}(i) }{2}\\
+ti_{\mathsf{N}} &= & \textit{TC}_{\mathsf{N}-2}(i)-zi_{\mathsf{N}}
+\end{array}
+\right.
+\label{eq:sys:zt2}
+\end{equation}
+
+The definition of $\textit{TC}_{\mathsf{N}}(i)$ depends on the value of $\mathsf{N}$.
+When $3 \le N \le 7$, values are defined as follows:
+\begin{eqnarray*}
+\textit{TC}_{3} & = & [2,2,4] \\
+\textit{TC}_{5} & = & [6,6,8,6,6] \\
+\textit{TC}_{7} & = & [18,18,20,18,18,18,18] \\
+\\
+\textit{TC}_{4} & = & [4,4,4,4] \\
+\textit{TC}_{6} & = & [10,10,10,10,12,12] \\
+\end{eqnarray*}
+It is not difficult to check that all these instanciations verify the aforementioned constraints.
+
+When $N \ge 8$, $\textit{TC}_{\mathsf{N}}(i)$ is defined as follows:
+\begin{equation}
+\textit{TC}_{\mathsf{N}}(i) = \left\{
+\begin{array}{l}
+a_{\mathsf{N}} \textrm{ if } 1 \le i \le c_{\mathsf{N}} \\
+a_{\mathsf{N}}+2 \textrm{ if } c_{\mathsf{N}} +1 \le i \le c_{\mathsf{N}} + d_{\mathsf{N}}
+\end{array}
+\right.
+\label{eq:TCN:def}
+\end{equation}
+
+
+We thus have
+\[
+\begin{array}{rcl}
+\textit{TC}_{\mathsf{N}}(i) - 2.\textit{TC}_{\mathsf{N}-2}(i)
+&\ge&
+a_{\mathsf{N}} - 2(a_{\mathsf{N}-2}+2) \\
+&\ge&
+\frac{2^{\mathsf{N}}-r_{\mathsf{N}}}{\mathsf{N}}
+-2 \left( \frac{2^{\mathsf{N-2}}-r_{\mathsf{N-2}}}{\mathsf{N-2}}+2\right)\\
+&\ge&
+\frac{2^{\mathsf{N}}-2N}{\mathsf{N}}
+-2 \left( \frac{2^{\mathsf{N-2}}}{\mathsf{N-2}}+2\right)\\
+&\ge&
+\frac{(\mathsf{N} -2).2^{\mathsf{N}}-2N.2^{\mathsf{N-2}}-6N(N-2)}{\mathsf{N.(N-2)}}\\
+\end{array}
+\]
+
+A simple variation study of the function $t:\R \rightarrow \R$ such that
+$x \mapsto t(x) = (x -2).2^{x}-2x.2^{x-2}-6x(x-2)$ shows that
+its derivative is strictly positive if $x \ge 6$ and $t(8)=224$.
+The integer $\textit{TC}_{\mathsf{N}}(i) - 2.\textit{TC}_{\mathsf{N}-2}(i)$ is thus positive
+for any $\mathsf{N} \ge 8$ and the proof is established.
+
+
+% \begin{table}[ht]
+% $$
+% \begin{array}{|l|l|l|l|l|l|}
+% \hline
+% \mathsf{N} & 3 & 4 & 5 & 6 & 7\\
+% \hline
+% a_{\mathsf{N}} & 2 & 4 & 6 & 10 & 18\\
+% \hline
+% \end{array}
+% $$
+% \label{tab:an}
+% \caption{First values of $a_{\mathsf{N}}$}
+% \end{table}
+
+For each element $i$, we are then left to choose $zi_{\mathsf{N}}$ positions
+among $\textit{TC}_{\mathsf{N}}(i)$, which leads to
+${\textit{TC}_{\mathsf{N}}(i) \choose zi_{\mathsf{N}} }$ possibilities.
+Notice that all such choices lead to an Hamiltonian path.
+
+
+
+
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "main"
+%%% ispell-dictionary: "american"
+%%% mode: flyspell
+%%% End: