]> AND Private Git Repository - 16dcc.git/blobdiff - hamilton.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
espace
[16dcc.git] / hamilton.tex
index 8f022c611ee37cac96201447b9f6678d1f6c3c85..ed7d21d3bc82f57d2518787ba3eb5305e154924f 100644 (file)
@@ -1,7 +1,7 @@
 Many approaches have been developed to solve the problem of building
 Many approaches have been developed to solve the problem of building
-a Gray code in a $\mathsf{N}$ cube~\cite{}, according to properties 
+a Gray code in a $\mathsf{N}$ cube~\cite{Robinson:1981:CS,DBLP:journals/combinatorics/BhatS96,ZanSup04,Bykov2016}, according to properties 
 the produced code has to verify.
 the produced code has to verify.
-For instance,~\cite{ZanSup04,DBLP:journals/combinatorics/BhatS96} focus on
+For instance,~\cite{DBLP:journals/combinatorics/BhatS96,ZanSup04} focus on
 balanced Gray codes. In the transition sequence of these codes, 
 the number of transitions of each element must differ
 at most by 2.
 balanced Gray codes. In the transition sequence of these codes, 
 the number of transitions of each element must differ
 at most by 2.
@@ -27,9 +27,172 @@ However, none of the two algorithms is compatible with the second one:
 balanced Gray codes that are generated by state of the art works~\cite{ZanSup04,DBLP:journals/combinatorics/BhatS96} are not locally balanced. Conversely,
 locally balanced Gray codes yielded by Igor Bykov approach~\cite{Bykov2016}
 are not globally balanced.
 balanced Gray codes that are generated by state of the art works~\cite{ZanSup04,DBLP:journals/combinatorics/BhatS96} are not locally balanced. Conversely,
 locally balanced Gray codes yielded by Igor Bykov approach~\cite{Bykov2016}
 are not globally balanced.
-This section thus show how the non deterministic approach 
+This section thus shows how the non deterministic approach 
 presented in~\cite{ZanSup04} has been automatized to provide balanced 
 Hamiltonian paths such that, for each subpart, 
 presented in~\cite{ZanSup04} has been automatized to provide balanced 
 Hamiltonian paths such that, for each subpart, 
-the number of swiches of each element is as constant as possible.
+the number of switches of each element is as uniform as possible.
 
 
+\subsection{Analysis of the Robinson-Cohn extension algorithm}
+As far as we know three works, 
+namely~\cite{Robinson:1981:CS},~\cite{DBLP:journals/combinatorics/BhatS96}, 
+and~\cite{ZanSup04} have adressed the probem of providing an approach
+to produce balanced gray code.
+The authors of~\cite{Robinson:1981:CS} introduced an inductive approach
+aiming at producing balanced Gray codes, provided the user gives 
+a special subsequence of the transition sequence at each induction step.
+This work have been strengthened in~\cite{DBLP:journals/combinatorics/BhatS96}
+where the authors have explicitely shown how to construct such a subsequence.
+Finally the authors of~\cite{ZanSup04} have presented 
+the \emph{Robinson-Cohn extension} 
+algorithm. There rigourous presentation of this one 
+have mainly allowed them to prove two properties.
+The former states that if 
+$\mathsf{N}$ is a 2-power, a balanced Gray code is always totally balanced.
+The latter states that for every $\mathsf{N}$ there 
+exists a Gray code such that all transition count numbers are 
+are 2-powers whose exponents are either equal
+or differ from each other by 1.
+However, the authors do not prove that the approach allows to build 
+(totally balanced) Gray code. 
+What follows shows that this fact is established and first recalls the approach.
 
 
+
+Let be given a $\mathsf{N}-2$-bit Gray code whose transition sequence is
+$S_{\mathsf{N}-2}$. What follows is the 
+ \emph{Robinson-Cohn extension} method~\cite{ZanSup04}
+which produces a $n$-bits Gray code.
+
+\begin{enumerate}
+\item \label{item:nondet}Let $l$ be an even positive integer. Find 
+$u_1, u_2, \dots , u_{l-2}, v$ (maybe empty) subsequences of $S_{\mathsf{N}-2}$ 
+such that $S_{\mathsf{N}-2}$ is the concatenation of 
+$$
+s_{i_1}, u_0, s_{i_2}, u_1, s_{i_3}, u_2, . . . , s_{i_l-1}, u_{l-2}, s_{i_l}, v
+$$
+where $i_1 = 1$, $i_2 = 2$, and $u_0 = \emptyset$ (the empty sequence).
+\item Replace in $S_{\mathsf{N}-2}$ the sequences $u_0, u_1, u_2, \ldots, u_{l-2}$ 
+  by 
+  $\mathsf{N} - 1,  u'(u_1,\mathsf{N} - 1, \mathsf{N}) , u'(u_2,\mathsf{N}, \mathsf{N} - 1), u'(u_3,\mathsf{N} - 1,\mathsf{N}), \dots, u'(u_{l-2},\mathsf{N}, \mathsf{N} - 1)$
+  respectively, where $u'(u,x,y)$ is the sequence $u,x,u^R,y,u$ such that 
+  $u^R$ is $u$ in reversed order. 
+  The obtained sequence is further denoted as $U$.
+\item Construct the sequences $V=v^R,\mathsf{N},v$, $W=\mathsf{N}-1,S_{\mathsf{N}-2},\mathsf{N}$, and let $W'$ be $W$ where the first 
+two elements have been exchanged.
+\item The transition sequence $S_{\mathsf{N}}$ is thus the concatenation $U^R, V, W'$.
+\end{enumerate} 
+
+It has been proven in~\cite{ZanSup04} that 
+$S_{\mathsf{N}}$ is transition sequence of a cyclic $\mathsf{N}$-bits Gray code 
+if $S_{\mathsf{N}-2}$ is. 
+However, the step~(\ref{item:nondet}) is not a constructive 
+step that precises how to select the subsequences which ensures that 
+yielded Gray code is balanced.
+Next section shows how to choose the sequence $l$ to have the balancy property.
+
+\subsection{Balanced Codes}
+Let us first recall how to formalize the balancy property of a Gray code.
+Let  $L = w_1, w_2, \dots, w_{2^\mathsf{N}}$ be the sequence 
+of a $\mathsf{N}$-bits cyclic Gray code. 
+The  transition sequence 
+$S = s_1, s_2, \dots, s_{2^n}$, $s_i$, $1 \le i \le 2^\mathsf{N}$,
+indicates which bit position changes between 
+codewords at index $i$ and $i+1$ modulo $2^\mathsf{N}$. 
+The \emph{transition count} function  
+$\textit{TC}_{\mathsf{N}} : \{1,\dots, \mathsf{N}\} \rightarrow \{0, \ldots, 2^{\mathsf{N}}\}$ 
+gives the number of times $i$ occurs in $S$,
+\textit{i.e.}, the number of times 
+the bit $i$ has been switched in $L$.   
+
+The Gray code is \emph{totally balanced} if $\textit{TC}_{\mathsf{N}}$ 
+is constant (and equal to $\frac{2^{\mathsf{N}}}{\mathsf{N}}$).
+It is \emph{balanced} if for any two bit indices $i$ and $j$, 
+$|\textit{TC}_{\mathsf{N}}(i) - \textit{TC}_{\mathsf{N}}(j)| \le  2$.
+
+
+   
+\begin{xpl}
+Let $L^*=000,100,101,001,011,111,110,010$ be the Gray code that corresponds to 
+the Hamiltonian cycle that has been removed in $f^*$.
+Its transition sequence is $S=3,1,3,2,3,1,3,2$ and its transition count function is 
+$\textit{TC}_3(1)= \textit{TC}_3(2)=2$ and  $\textit{TC}_3(3)=4$. Such a Gray code is balanced. 
+
+Let now  
+$L^4=0000, 0010, 0110, 1110, 1111, 0111, 0011, 0001, 0101,$
+$0100, 1100, 1101, 1001, 1011, 1010, 1000$
+be a cyclic Gray code. Since $S=2,3,4,1,4,3,2,3,1,4,1,3,2,1,2,4$ $\textit{TC}_4$ is equal to 4 everywhere, this code
+is thus totally balanced.
+
+On the contrary, for the standard $4$-bits Gray code  
+$L^{\textit{st}}=0000,0001,0011,0010,0110,0111,0101,0100,1100,$
+$1101,1111,1110,1010,1011,1001,1000$,
+we have $\textit{TC}_4(1)=8$ $\textit{TC}_4(2)=4$ $\textit{TC}_4(3)=\textit{TC}_4(4)=2$ and
+the code is neither balanced nor totally balanced.
+\end{xpl}
+
+
+\begin{thrm}\label{prop:balanced}
+Let $\mathsf{N}$ in $\Nats$, and $a_{\mathsf{N}}$ be defined by
+$a_{\mathsf{N}}= 2 \lfloor \dfrac{2^{\mathsf{N}}}{2\mathsf{N}} \rfloor$. 
+There exists then a sequence $l$ in 
+step~(\ref{item:nondet}) of the \emph{Robinson-Cohn extension} algorithm
+such that all the transition counts $\textit{TC}_{\mathsf{N}}(i)$ 
+are $a_{\mathsf{N}}$ or $a_{\mathsf{N}}+2$ 
+for any $i$, $1 \le i \le \mathsf{N}$.
+\end{thrm}
+
+
+
+
+
+The proof is done by induction on $\mathsf{N}$. Let us imadialty verify 
+that it is established for both odd and even smallest values, \textit{i.e.} 
+$3$ and $4$.
+For the initial case where $\mathsf{N}=3$, \textit{i.e.} $\mathsf{N-2}=1$ we successively have:  $S_1=1,1$, $l=2$,  $u_0 = \emptyset$, and $v=\emptyset$.
+Thus again the algorithm successively produces 
+$U= 1,2,1$, $V = 3$, $W= 2, 1, 1,3$, and $W' = 1,2,1,3$.
+Finally, $S_3$ is $1,2,1,3,1,2,1,3$ which obviously verifies the theorem.    
+ For the initial case where $\mathsf{N}=4$, \textit{i.e.} $\mathsf{N-2}=2$ 
+we successively have:  $S_1=1,2,1,2$, $l=4$, 
+$u_0,u_1,u_2 = \emptyset,\emptyset,\emptyset$, and $v=\emptyset$.
+Thus again the algorithm successively produces 
+$U= 1,3,2,3,4,1,4,3,2$, $V = 4$, $W= 3, 1, 2, 1,2, 4$, and $W' = 1, 3, 2, 1,2, 4 $.
+Finally, $S_4$ is 
+$
+2,3,4,1,4,3,2,3,1,4,1,3,2,1,2,4
+$ 
+such that $\textit{TC}_4(i) = 4$ and the theorem is established for 
+odd and even initial values.
+
+
+For the inductive case, let us first define some variables.
+Let $c_{\mathsf{N}}$ (resp. $d_{\mathsf{N}}$) be the number of elements 
+whose transistion count is exactly $a_{\mathsf{N}}$ (resp $a_{\mathsf{N}} +2$).
+These two variables are defined by the system 
+$$
+\left\{
+\begin{array}{lcl}
+c_{\mathsf{N}} + d_{\mathsf{N}} & = & \mathsf{N} \\
+c_{\mathsf{N}}a_{\mathsf{N}} + d_{\mathsf{N}}(a_{\mathsf{N}}+2) & = & 2^{\mathsf{N}} 
+\end{array}
+\right.
+\qquad 
+\Leftrightarrow 
+\qquad 
+\left\{
+\begin{array}{lcl}
+d_{\mathsf{N}} & = & \dfrac{2^{\mathsf{N} -n.a_{\mathsf{N}}}{2} \\
+c_{\mathsf{N}} = \mathsf{N} -  d_{\mathsf{N}}
+\end{array}
+\right.
+$$
+
+Since $a_{\mathsf{N}$ is even, $d_{\mathsf{N}}$ is defined.
+Both $c_{\mathsf{N}}$ and  $d_{\mathsf{N}}$ are obviously positves.
+
+
+
+
+
+
+\subsection{Toward a local uniform distribution of switches}