+N)$.
+
+
+In this latter context, we claim that the upper bound for the stopping time
+should be reduced. This fact is studied in the next section.
+
+\subsection{Practical Evaluation of Stopping Times}\label{sub:stop:exp}
+
+Let be given a function $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$
+and an initial seed $x^0$.
+The pseudo code given in Algorithm~\ref{algo:stop} returns the smallest
+number of iterations such that all elements $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ are fair. It allows to deduce an approximation of $E[\ts]$
+by calling this code many times with many instances of function and many
+seeds.
+
+\begin{algorithm}[ht]
+%\begin{scriptsize}
+\KwIn{a function $f$, an initial configuration $x^0$ ($\mathsf{N}$ bits)}
+\KwOut{a number of iterations $\textit{nbit}$}
+
+$\textit{nbit} \leftarrow 0$\;
+$x\leftarrow x^0$\;
+$\textit{fair}\leftarrow\emptyset$\;
+\While{$\left\vert{\textit{fair}}\right\vert < \mathsf{N} $}
+{
+ $ s \leftarrow \textit{Random}(\mathsf{N})$ \;
+ $\textit{image} \leftarrow f(x) $\;
+ \If{$\textit{Random}(1) \neq 0$ and $x[s] \neq \textit{image}[s]$}{
+ $\textit{fair} \leftarrow \textit{fair} \cup \{s\}$\;
+ $x[s] \leftarrow \textit{image}[s]$\;
+ }
+ $\textit{nbit} \leftarrow \textit{nbit}+1$\;
+}
+\Return{$\textit{nbit}$}\;
+%\end{scriptsize}
+\caption{Pseudo Code of stopping time computation}
+\label{algo:stop}
+\end{algorithm}
+
+Practically speaking, for each number $\mathsf{N}$, $ 3 \le \mathsf{N} \le 16$,
+10 functions have been generated according to the method presented in Section~\ref{sec:hamilton}. For each of them, the calculus of the approximation of $E[\ts]$
+is executed 10000 times with a random seed. Figure~\ref{fig:stopping:moy}
+summarizes these results. A circle represents the
+approximation of $E[\ts]$ for a given $\mathsf{N}$.
+The line is the graph of the function $x \mapsto 2x\ln(2x+8)$.
+It can firstly
+be observed that the approximation is largely
+smaller than the upper bound given in Theorem~\ref{prop:stop}.
+It can be further deduced that the conjecture of the previous section
+is realistic according to the graph of $x \mapsto 2x\ln(2x+8)$.
+
+
+
+
+
+% \begin{table}
+% $$
+% \begin{array}{|*{14}{l|}}
+% \hline
+% \mathsf{N} & 4 & 5 & 6 & 7& 8 & 9 & 10& 11 & 12 & 13 & 14 & 15 & 16 \\
+% \hline
+% \mathsf{N} & 21.8 & 28.4 & 35.4 & 42.5 & 50 & 57.7 & 65.6& 73.5 & 81.6 & 90 & 98.3 & 107.1 & 115.7 \\
+% \hline
+% \end{array}
+% $$
+% \caption{Average Stopping Time}\label{table:stopping:moy}
+% \end{table}
+
+\begin{figure}
+\centering
+\includegraphics[width=0.49\textwidth]{complexity}
+\caption{Average Stopping Time Approximation}\label{fig:stopping:moy}
+\end{figure}
+
+
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "main"
+%%% ispell-dictionary: "american"
+%%% mode: flyspell
+%%% End: