+N)$.
+
+
+In this later context, we claim that the upper bound for the stopping time
+should be reduced. This fact is studied in the next section.
+
+\subsection{Practical Evaluation of Stopping Times}\label{sub:stop:exp}
+
+Let be given a function $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$
+and an initial seed $x^0$.
+The pseudo code given in algorithm~\ref{algo:stop} returns the smallest
+number of iterations such that all elements $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ are fair. It allows to deduce an approximation of $E[\ts]$
+by calling this code many times with many instances of function and many
+seeds.
+
+Practically speaking, for each number $\mathsf{N}$,$ 3 \le \mathsf{N} \le 16$,
+10 functions have been generaed according to method presented in section~\ref{sec:hamilton}. For each of them, the calculus of the approximation of $E[\ts]$
+is executed 10000 times with a random seed. The table~\ref{table:stopping:moy}
+summarizes results. It can be observed that the approximation is largely
+wœsmaller than the upper bound given in theorem~\ref{prop:stop}.
+
+\begin{algorithm}[ht]
+%\begin{scriptsize}
+\KwIn{a function $f$, an initial configuration $x^0$ ($\mathsf{N}$ bits)}
+\KwOut{a number of iterations $\textit{nbit}$}
+
+$\textit{nbit} \leftarrow 0$\;
+$x\leftarrow x^0$\;
+$\textit{visited}\leftarrow\emptyset$\;
+
+\While{$\left\vert{\textit{visited}}\right\vert < \mathsf{N} $}
+{
+ $ s \leftarrow \textit{Random}(n)$ \;
+ $\textit{image} \leftarrow f(x) $\;
+ \If{$x[s] \neq \textit{image}[s]$}{
+ $\textit{visited} \leftarrow \textit{visited} \cup \{s\}$
+ }
+ $x[s] \leftarrow \textit{image}[s]$\;
+ $\textit{nbit} \leftarrow \textit{nbit}+1$\;
+}
+\Return{$\textit{nbit}$}\;
+%\end{scriptsize}
+\caption{Pseudo Code of the stoping time calculus}
+\label{algo:stop}
+\end{algorithm}
+
+
+
+
+\begin{table}
+$$
+\begin{array}{|*{15}{l|}}
+\hline
+\mathsf{N} & 3 & 4 & 5 & 6 & 7& 8 & 9 & 10& 11 & 12 & 13 & 14 & 15 & 16 \\
+\hline
+\mathsf{N} & 3 & 10.9 & 5 & 17.7 & 7& 25 & 9 & 32.7& 11 & 40.8 & 13 & 49.2 & 15 & 16 \\
+\hline
+\end{array}
+$$
+\caption{Average Stopping Time}\label{table:stopping:moy}
+\end{table}