]> AND Private Git Repository - 16dcc.git/blobdiff - prng.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
modif prng conclusion
[16dcc.git] / prng.tex
index b4f20599dd7c5dafa1fef59fda396931497704dd..4dbeea7ccc4dfce541c4507bc4ed5810119988f7 100644 (file)
--- a/prng.tex
+++ b/prng.tex
@@ -110,23 +110,25 @@ $\textcircled{c}$&
 %%%%% n= 7
 \hline
 &
 %%%%% n= 7
 \hline
 &
-[111, 124, 93, 120, 122, 90, 113, 88, 115, 126, 125, 84, 123, 98
+[111, 124, 93, 120, 122, 114, 89, 121, 87, 126, 125, 84, 123, 82
 &&\\
 &&\\
-&112, 96, 109, 106, 77, 110, 99, 74, 104, 72, 71, 100, 117, 116, 
+&112, 80, 79, 106, 105, 110, 75, 107, 73, 108, 119, 100, 117, 116, 
 &&\\
 &&\\
-&103, 102, 65, 97, 31, 86, 95, 28, 27, 91, 121, 92, 119, 118, 69, 
+&103, 102, 101, 97, 31, 86, 95, 94, 83, 26, 88, 24, 71, 118, 69, 
 &&\\
 &&\\
-&68, 87, 114, 89, 81, 15, 76, 79, 108, 107, 10, 105, 8, 7, 6, 101, 
-&&\\
-$\textcircled{d}$&70, 75, 82, 64, 0, 127, 54, 53, 62, 51, 59, 56, 60, 39, 52, 37, 
+&68, 115, 90, 113, 16, 15, 76, 109, 72, 74, 10, 9, 104, 7, 6, 65, 
 &&\\
 &&\\
+$\textcircled{d}$ &70, 99, 98, 64, 96, 127, 54, 53, 62, 51, 59, 56, 60, 39, 52, 37, &7 &99\\
 &36, 55, 58, 57, 49, 63, 44, 47, 40, 42, 46, 45, 41, 35, 34, 33, 
 &&\\
 &36, 55, 58, 57, 49, 63, 44, 47, 40, 42, 46, 45, 41, 35, 34, 33, 
 &&\\
-&38, 43, 50, 32, 48, 29, 94, 61, 24, 26, 18, 17, 25, 19, 30, 85, 
+&38, 43, 50, 32, 48, 29, 28, 61, 92, 91, 18, 17, 25, 19, 30, 85, 
+&&\\
+&22, 27, 2, 81, 0, 13, 78, 77, 14, 3, 11, 8, 12, 23, 4, 21, 20, 
 &&\\
 &&\\
-&22, 83, 2, 16, 80, 13, 78, 9, 14, 3, 11, 73, 12, 23, 4, 21, 20, 
+&67, 66, 5, 1]
 &&\\
 &&\\
-&67, 66, 5, 1] &&\\
+
+
 %%%%%n=8
 \hline
 &
 %%%%%n=8
 \hline
 &
@@ -178,46 +180,78 @@ $\textcircled{e}$&151, 149, 19, 210, 144, 152, 141, 206, 13, 12, 171, 10, 201, 1
 Let us first discuss about results against the NIST test suite. 
 In our experiments, 100 sequences (s = 100) of 1,000,000 bits are generated and tested.
 If the value $\mathbb{P}_T$ of any test is smaller than 0.0001, the sequences are considered to be not good enough
 Let us first discuss about results against the NIST test suite. 
 In our experiments, 100 sequences (s = 100) of 1,000,000 bits are generated and tested.
 If the value $\mathbb{P}_T$ of any test is smaller than 0.0001, the sequences are considered to be not good enough
-and the generator is unsuitable. Table~\ref{The passing rate} shows $\mathbb{P}_T$ of sequences based on discrete
-chaotic iterations using different schemes. If there are at least two statistical values in a test, this test is
+and the generator is unsuitable. 
+
+Table~\ref{The passing rate} shows $\mathbb{P}_T$ of sequences based 
+on $\chi_{\textit{16HamG}}$ using different functions, namely
+$\textcircled{a}$,\ldots, $\textcircled{e}$.
+In this algorithm implementation, 
+the embedded PRNG \textit{Random} is the default Python PRNG, \textit{i.e.},
+the Mersenne Twister Algorithm~\cite{matsumoto1998mersenne}. 
+Implementations for $\mathsf{N}=4, \dots, 8$ of this algorithm is evaluated
+through the NIST test suite and results are given in columns 
+$\textit{MT}_4$, \ldots,  $\textit{MT}_8$.
+If there are at least two statistical values in a test, this test is
 marked with an asterisk and the average value is computed to characterize the statistics.
 marked with an asterisk and the average value is computed to characterize the statistics.
-We can see in Table \ref{The passing rate} that all the rates are greater than 97/100, \textit{i.e.}, all the generators 
-achieve to pass the NIST battery of tests.
 
 
+We first can see in Table \ref{The passing rate} that all the rates 
+are greater than 97/100, \textit{i.e.}, all the generators 
+achieve to pass the NIST battery of tests.
+It can be noticed that adding chaos properties for Mersenne Twister 
+algorithm does not reduce its security aginst this statistical tests.
 
 
 
 
-\begin{table} 
+\begin{table*
 \renewcommand{\arraystretch}{1.3}
 \begin{center}
 \renewcommand{\arraystretch}{1.3}
 \begin{center}
-\begin{scriptsize}
+\begin{tiny}
 \setlength{\tabcolsep}{2pt}
 
 
 \setlength{\tabcolsep}{2pt}
 
 
-\begin{tabular}{|l|l|l|l|l|l|}
-\hline
-Method &$\textcircled{a}$& $\textcircled{b}$ & $\textcircled{c}$ & $\textcircled{d}$ & $\textcircled{e}$   \\ \hline\hline
-Frequency (Monobit)& 0.851 (0.98)& 0.719 (0.99)& 0.699 (0.99)& 0.514 (1.0)& 0.798 (0.99)\\ \hline 
-Frequency (Monobit)& 0.851 (0.98)& 0.719 (0.99)& 0.699 (0.99)& 0.514 (1.0)& 0.798 (0.99)\\ \hline 
-Frequency  within a Block& 0.262 (0.98)& 0.699 (0.98)& 0.867 (0.99)& 0.145 (1.0)& 0.455 (0.99)\\ \hline 
-Cumulative Sums (Cusum) *& 0.301 (0.98)& 0.521 (0.99)& 0.688 (0.99)& 0.888 (1.0)& 0.598 (1.0)\\ \hline 
-Runs& 0.224 (0.97)& 0.383 (0.97)& 0.108 (0.96)& 0.213 (0.99)& 0.616 (0.99)\\ \hline 
-Longest Run of 1s & 0.383 (1.0)& 0.474 (1.0)& 0.983 (0.99)& 0.699 (0.98)& 0.897 (0.96)\\ \hline 
-Binary Matrix Rank& 0.213 (1.0)& 0.867 (0.99)& 0.494 (0.98)& 0.162 (0.99)& 0.924 (0.99)\\ \hline 
-Disc. Fourier Transf. (Spect.)& 0.474 (1.0)& 0.739 (0.99)& 0.012 (1.0)& 0.678 (0.98)& 0.437 (0.99)\\ \hline 
-Unoverlapping Templ. Match.*& 0.505 (0.990)& 0.521 (0.990)& 0.510 (0.989)& 0.511 (0.990)& 0.499 (0.990)\\ \hline 
-Overlapping Temp. Match.& 0.574 (0.98)& 0.304 (0.99)& 0.437 (0.97)& 0.759 (0.98)& 0.275 (0.99)\\ \hline 
-Maurer's Universal Statistical& 0.759 (0.96)& 0.699 (0.97)& 0.191 (0.98)& 0.699 (1.0)& 0.798 (0.97)\\ \hline 
-Approximate Entropy (m=10)& 0.759 (0.99)& 0.162 (0.99)& 0.867 (0.99)& 0.534 (1.0)& 0.616 (0.99)\\ \hline 
-Random Excursions *& 0.666 (0.994)& 0.410 (0.962)& 0.287 (0.998)& 0.365 (0.994)& 0.480 (0.985)\\ \hline 
-Random Excursions Variant *& 0.337 (0.988)& 0.519 (0.984)& 0.549 (0.994)& 0.225 (0.995)& 0.533 (0.993)\\ \hline 
-Serial* (m=10)& 0.630 (0.99)& 0.529 (0.99)& 0.460 (0.99)& 0.302 (0.995)& 0.360 (0.985)\\ \hline 
-Linear Complexity& 0.719 (1.0)& 0.739 (0.99)& 0.759 (0.98)& 0.122 (0.97)& 0.514 (0.99)\\ \hline 
+% \begin{tabular}{|l|l|l|l|l|l|}
+% \hline
+% Method &$\textcircled{a}$& $\textcircled{b}$ & $\textcircled{c}$ & $\textcircled{d}$ & $\textcircled{e}$   \\ \hline\hline
+% Frequency (Monobit)& 0.851 (0.98)& 0.719 (0.99)& 0.699 (0.99)& 0.514 (1.0)& 0.798 (0.99)\\ \hline 
+% Frequency (Monobit)& 0.851 (0.98)& 0.719 (0.99)& 0.699 (0.99)& 0.514 (1.0)& 0.798 (0.99)\\ \hline 
+% Frequency  within a Block& 0.262 (0.98)& 0.699 (0.98)& 0.867 (0.99)& 0.145 (1.0)& 0.455 (0.99)\\ \hline 
+% Cumulative Sums (Cusum) *& 0.301 (0.98)& 0.521 (0.99)& 0.688 (0.99)& 0.888 (1.0)& 0.598 (1.0)\\ \hline 
+% Runs& 0.224 (0.97)& 0.383 (0.97)& 0.108 (0.96)& 0.213 (0.99)& 0.616 (0.99)\\ \hline 
+% Longest Run of 1s & 0.383 (1.0)& 0.474 (1.0)& 0.983 (0.99)& 0.699 (0.98)& 0.897 (0.96)\\ \hline 
+% Binary Matrix Rank& 0.213 (1.0)& 0.867 (0.99)& 0.494 (0.98)& 0.162 (0.99)& 0.924 (0.99)\\ \hline 
+% Disc. Fourier Transf. (Spect.)& 0.474 (1.0)& 0.739 (0.99)& 0.012 (1.0)& 0.678 (0.98)& 0.437 (0.99)\\ \hline 
+% Unoverlapping Templ. Match.*& 0.505 (0.990)& 0.521 (0.990)& 0.510 (0.989)& 0.511 (0.990)& 0.499 (0.990)\\ \hline 
+% Overlapping Temp. Match.& 0.574 (0.98)& 0.304 (0.99)& 0.437 (0.97)& 0.759 (0.98)& 0.275 (0.99)\\ \hline 
+% Maurer's Universal Statistical& 0.759 (0.96)& 0.699 (0.97)& 0.191 (0.98)& 0.699 (1.0)& 0.798 (0.97)\\ \hline 
+% Approximate Entropy (m=10)& 0.759 (0.99)& 0.162 (0.99)& 0.867 (0.99)& 0.534 (1.0)& 0.616 (0.99)\\ \hline 
+% Random Excursions *& 0.666 (0.994)& 0.410 (0.962)& 0.287 (0.998)& 0.365 (0.994)& 0.480 (0.985)\\ \hline 
+% Random Excursions Variant *& 0.337 (0.988)& 0.519 (0.984)& 0.549 (0.994)& 0.225 (0.995)& 0.533 (0.993)\\ \hline 
+% Serial* (m=10)& 0.630 (0.99)& 0.529 (0.99)& 0.460 (0.99)& 0.302 (0.995)& 0.360 (0.985)\\ \hline 
+% Linear Complexity& 0.719 (1.0)& 0.739 (0.99)& 0.759 (0.98)& 0.122 (0.97)& 0.514 (0.99)\\ \hline 
+\begin{tabular}{|l|r|r|r|r|r||r|r|r|r|r|}
+ \hline 
+Test & $\textit{MT}_4$ & $\textit{MT}_5$& $\textit{MT}_6$& $\textit{MT}_7$& $\textit{MT}_8$
+&$\textcircled{a}$& $\textcircled{b}$ & $\textcircled{c}$ & $\textcircled{d}$ & $\textcircled{e}$ \\ \hline 
+Frequency (Monobit)& 0.924 (1.0)& 0.678 (0.98)& 0.102 (0.97)& 0.213 (0.98)& 0.719 (0.99)& 0.129 (1.0)& 0.181 (1.0)& 0.637 (0.99)& 0.935 (1.0)& 0.978 (1.0)\\ \hline 
+Frequency  within a Block& 0.514 (1.0)& 0.419 (0.98)& 0.129 (0.98)& 0.275 (0.99)& 0.455 (0.99)& 0.275 (1.0)& 0.534 (0.98)& 0.066 (1.0)& 0.719 (1.0)& 0.366 (1.0)\\ \hline 
+Cumulative Sums (Cusum) *& 0.668 (1.0)& 0.568 (0.99)& 0.881 (0.98)& 0.529 (0.98)& 0.657 (0.995)& 0.695 (1.0)& 0.540 (1.0)& 0.514 (0.985)& 0.773 (0.995)& 0.506 (0.99)\\ \hline 
+Runs& 0.494 (0.99)& 0.595 (0.97)& 0.071 (0.97)& 0.017 (1.0)& 0.834 (1.0)& 0.897 (0.99)& 0.051 (1.0)& 0.102 (0.98)& 0.616 (0.99)& 0.191 (1.0)\\ \hline 
+Longest Run of Ones in a Block& 0.366 (0.99)& 0.554 (1.0)& 0.042 (0.99)& 0.051 (0.99)& 0.897 (0.97)& 0.851 (1.0)& 0.595 (0.99)& 0.419 (0.98)& 0.616 (0.98)& 0.897 (1.0)\\ \hline 
+Binary Matrix Rank& 0.275 (0.98)& 0.494 (0.99)& 0.719 (1.0)& 0.334 (0.98)& 0.637 (0.99)& 0.419 (1.0)& 0.946 (0.99)& 0.319 (0.99)& 0.739 (0.97)& 0.366 (1.0)\\ \hline 
+Discrete Fourier Transform (Spectral)& 0.122 (0.98)& 0.108 (0.99)& 0.108 (1.0)& 0.514 (0.99)& 0.534 (0.98)& 0.867 (1.0)& 0.514 (1.0)& 0.145 (1.0)& 0.224 (0.99)& 0.304 (1.0)\\ \hline 
+Non-overlapping Template Matching*& 0.483 (0.990)& 0.507 (0.990)& 0.520 (0.988)& 0.494 (0.988)& 0.515 (0.989)& 0.542 (0.990)& 0.512 (0.989)& 0.505 (0.990)& 0.494 (0.989)& 0.493 (0.991)\\ \hline 
+Overlapping Template Matching& 0.595 (0.99)& 0.759 (1.0)& 0.637 (1.0)& 0.554 (0.99)& 0.236 (1.0)& 0.275 (0.99)& 0.080 (0.99)& 0.574 (0.98)& 0.798 (0.99)& 0.834 (0.99)\\ \hline 
+Maurer's "Universal Statistical"& 0.202 (0.99)& 0.000 (0.99)& 0.514 (0.98)& 0.883 (0.97)& 0.366 (0.99)& 0.383 (0.99)& 0.991 (0.98)& 0.851 (1.0)& 0.595 (0.98)& 0.514 (1.0)\\ \hline 
+Approximate Entropy (m=10)& 0.616 (0.99)& 0.145 (0.99)& 0.455 (0.99)& 0.262 (0.97)& 0.494 (1.0)& 0.935 (1.0)& 0.719 (1.0)& 0.883 (1.0)& 0.719 (0.97)& 0.366 (0.99)\\ \hline 
+Random Excursions *& 0.275 (1.0)& 0.495 (0.975)& 0.465 (0.979)& 0.452 (0.991)& 0.260 (0.989)& 0.396 (0.991)& 0.217 (0.989)& 0.445 (0.975)& 0.743 (0.993)& 0.380 (0.990)\\ \hline 
+Random Excursions Variant *& 0.382 (0.995)& 0.400 (0.994)& 0.417 (0.984)& 0.456 (0.991)& 0.389 (0.991)& 0.486 (0.997)& 0.373 (0.981)& 0.415 (0.994)& 0.424 (0.991)& 0.380 (0.991)\\ \hline 
+Serial* (m=10)& 0.629 (0.99)& 0.963 (0.99)& 0.366 (0.995)& 0.537 (0.985)& 0.253 (0.995)& 0.350 (1.0)& 0.678 (0.995)& 0.287 (0.995)& 0.740 (0.99)& 0.301 (0.98)\\ \hline 
+Linear Complexity& 0.494 (0.99)& 0.514 (0.98)& 0.145 (1.0)& 0.657 (0.98)& 0.145 (0.99)& 0.455 (0.99)& 0.867 (1.0)& 0.401 (0.99)& 0.191 (0.97)& 0.699 (1.0)\\ \hline 
 \end{tabular}
 \end{tabular}
-\end{scriptsize}
+\end{tiny}
 \end{center}
 \caption{NIST SP 800-22 test results ($\mathbb{P}_T$)}
 \label{The passing rate}
 \end{center}
 \caption{NIST SP 800-22 test results ($\mathbb{P}_T$)}
 \label{The passing rate}
-\end{table}
+\end{table*}
 
 
 %%% Local Variables:
 
 
 %%% Local Variables: