]> AND Private Git Repository - 16dcc.git/blobdiff - stopping.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ajout de fichiers
[16dcc.git] / stopping.tex
index 539d653dd3fa66c209cb9b7d11a49c05b32d6021..bb95663c6ca82fee5c21a017b39f496a76d6165b 100644 (file)
@@ -1,6 +1,6 @@
 This section considers functions $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}} $ 
 issued from an hypercube where an Hamiltonian path has been removed
-as described in previous section.
+as described in the previous section.
 Notice that the iteration graph is always a subgraph of 
 ${\mathsf{N}}$-cube augmented with all the self-loop, \textit{i.e.}, all the 
 edges $(v,v)$ for any $v \in \Bool^{\mathsf{N}}$. 
@@ -10,7 +10,7 @@ interpreted as Markov chains.
 \begin{xpl}
 Let us consider for instance  
 the graph $\Gamma(f)$ defined 
-in \textsc{Figure~\ref{fig:iteration:f*}.} and 
+in Figure~\ref{fig:iteration:f*} and 
 the probability function $p$ defined on the set of edges as follows:
 $$
 p(e) \left\{
@@ -39,13 +39,13 @@ P=\dfrac{1}{6} \left(
 
 
 A specific random walk in this modified hypercube is first 
-introduced (See section~\ref{sub:stop:formal}). We further 
+introduced (see Section~\ref{sub:stop:formal}). We further 
  study this random walk in a theoretical way to 
 provide an upper bound of fair sequences 
-(See section~\ref{sub:stop:bound}).
-We finally complete these study with experimental
+(see Section~\ref{sub:stop:bound}).
+We finally complete this study with experimental
 results that reduce this bound (Sec.~\ref{sub:stop:exp}).
-Notice that for a general references on Markov chains
+For a general reference on Markov chains,
 see~\cite{LevinPeresWilmer2006}, 
 and particularly Chapter~5 on stopping times.  
 
@@ -76,7 +76,7 @@ $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
 %% \textit{i.e.}, is the time until the matrix $X$ of a Markov chain  
 %% is $\epsilon$-close to a stationary distribution.
 
-Intutively speaking,  $t_{\rm mix}(\varepsilon)$ is the time/steps required
+Intuitively speaking,  $t_{\rm mix}(\varepsilon)$ is the time/steps required
 to be sure to be $\varepsilon$-close to the stationary distribution, wherever
 the chain starts. 
 
@@ -137,8 +137,8 @@ In other words, $E$ is the set of all the edges in the classical
 ${\mathsf{N}}$-cube. 
 Let $h$ be a function from $\Bool^{\mathsf{N}}$ into $\llbracket 1, {\mathsf{N}} \rrbracket$.
 Intuitively speaking $h$ aims at memorizing for each node 
-$X \in \Bool^{\mathsf{N}}$ which edge is removed in the Hamiltonian cycle,
-\textit{i.e.} which bit in $\llbracket 1, {\mathsf{N}} \rrbracket$ 
+$X \in \Bool^{\mathsf{N}}$ whose edge is removed in the Hamiltonian cycle,
+\textit{i.e.}, which bit in $\llbracket 1, {\mathsf{N}} \rrbracket$ 
 cannot be switched.
 
 
@@ -164,7 +164,7 @@ P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$}
 We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function 
 such that for any $X \in \Bool^{\mathsf{N}} $, 
 $(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$. 
-The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$,
+The function $\ov{h}$ is said to be {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$,
 $\ov{h}(\ov{h}(X))\neq X$. 
 
 \begin{lmm}\label{lm:h}
@@ -208,10 +208,10 @@ $$
 An integer $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ is said {\it fair} 
 at time $t$ if there
 exists $0\leq j <t$ such that $Z_{j+1}=(\ell,\cdot)$ and $h(X_j)\neq \ell$.
-In other words, there exist a date $j$ before $t$ where 
+In other words, there exists a date $j$ before $t$ where 
 the first element of the random variable $Z$ is exactly $l$ 
 (\textit{i.e.}, $l$ is the strategy at date $j$) 
-and where the configuration $X_j$ allows to traverse the edge $l$.  
+and where the configuration $X_j$ allows to cross the edge $l$.  
  
 Let $\ts$ be the first time all the elements of $\llbracket 1, {\mathsf{N}} \rrbracket$
 are fair. The integer $\ts$ is a randomized stopping time for
@@ -271,7 +271,7 @@ $E[S_{X,\ell}]\leq 8{\mathsf{N}}^2$ is established.
 \end{lmm}
 
 \begin{proof}
-For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq
+For every $X$, every $\ell$, one has $\P(S_{X,\ell}\leq 2)\geq
 \frac{1}{4{\mathsf{N}}^2}$. 
 Let $X_0= X$.
 Indeed, 
@@ -359,14 +359,15 @@ Since $\ts^\prime$ is the time used to obtain $\mathsf{N}-1$ fair bits.
 Assume that the last unfair bit is $\ell$. One has
 $\ts=\ts^\prime+S_{X_\tau,\ell}$, and therefore $E[\ts] =
 E[\ts^\prime]+E[S_{X_\tau,\ell}]$. Therefore, Theorem~\ref{prop:stop} is a
-direct application of lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.
+direct application of Lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.
 \end{proof}
 
 Now using Markov Inequality, one has $\P_X(\tau > t)\leq \frac{E[\tau]}{t}$.
 With $t_n=32N^2+16N\ln (N+1)$, one obtains:  $\P_X(\tau > t_n)\leq \frac{1}{4}$. 
-Therefore, using the defintion of $t_{\rm mix)}$ and
+Therefore, using the definition of $t_{\rm mix}$ and
 Theorem~\ref{thm-sst}, it follows that
-$t_{\rm mix}\leq 32N^2+16N\ln (N+1)=O(N^2)$.
+$t_{\rm mix}(\frac{1}{4})\leq 32N^2+16N\ln (N+1)=O(N^2)$ and that 
+
 
 
 Notice that the calculus of the stationary time upper bound is obtained
@@ -376,20 +377,20 @@ The calculus doesn't consider (balanced) Hamiltonian cycles, which
 are more regular and more binding than this constraint.
 Moreover, the bound
 is obtained using the coarse Markov Inequality. For the
-classical (lazzy) random walk the  $\mathsf{N}$-cube, without removing any
-Hamiltonian cylce, the mixing time is in $\Theta(N\ln N)$. 
+classical (lazy) random walk the  $\mathsf{N}$-cube, without removing any
+Hamiltonian cycle, the mixing time is in $\Theta(N\ln N)$. 
 We conjecture that in our context, the mixing time is also in $\Theta(N\ln
 N)$.
 
 
-In this later context, we claim that the upper bound for the stopping time 
+In this latter context, we claim that the upper bound for the stopping time 
 should be reduced. This fact is studied in the next section.
 
 \subsection{Practical Evaluation of Stopping Times}\label{sub:stop:exp}
  
 Let be given a function $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$
 and an initial seed $x^0$.
-The pseudo code given in algorithm~\ref{algo:stop} returns the smallest 
+The pseudo code given in Algorithm~\ref{algo:stop} returns the smallest 
 number of iterations such that all elements $\ell\in \llbracket 1,{\mathsf{N}} \rrbracket$ are fair. It allows to deduce an approximation of $E[\ts]$
 by calling this code many times with many instances of function and many 
 seeds.
@@ -414,21 +415,21 @@ $\textit{fair}\leftarrow\emptyset$\;
 }
 \Return{$\textit{nbit}$}\;
 %\end{scriptsize}
-\caption{Pseudo Code of stoping time calculus }
+\caption{Pseudo Code of stopping time computation}
 \label{algo:stop}
 \end{algorithm}
 
 Practically speaking, for each number $\mathsf{N}$, $ 3 \le \mathsf{N} \le 16$, 
-10 functions have been generated according to method presented in section~\ref{sec:hamilton}. For each of them, the calculus of the approximation of $E[\ts]$
-is executed 10000 times with a random seed. The Figure~\ref{fig:stopping:moy}
-summarizes these results. In this one, a circle represents the 
+10 functions have been generated according to the method presented in Section~\ref{sec:hamilton}. For each of them, the calculus of the approximation of $E[\ts]$
+is executed 10000 times with a random seed. Figure~\ref{fig:stopping:moy}
+summarizes these results. A circle represents the 
 approximation of $E[\ts]$ for a given $\mathsf{N}$.
 The line is the graph of the function $x \mapsto 2x\ln(2x+8)$. 
 It can firstly 
 be observed that the approximation is largely
-smaller than the upper bound given in theorem~\ref{prop:stop}.
+smaller than the upper bound given in Theorem~\ref{prop:stop}.
 It can be further deduced  that the conjecture of the previous section 
-is realistic according the graph of $x \mapsto 2x\ln(2x+8)$.
+is realistic according to the graph of $x \mapsto 2x\ln(2x+8)$.