]> AND Private Git Repository - 16dcc.git/blobdiff - conclusion.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
intégration des remarques des relecteurs
[16dcc.git] / conclusion.tex
index 2705043fe2335fd223c705c26e86b2bc2409800a..a656965cb88c88277d5cb99076cc4e0fe10f593e 100644 (file)
@@ -1,27 +1,41 @@
 This work has assumed a Boolean map $f$ which is embedded into   
 a discrete-time dynamical system $G_f$.
 This one is supposed to be iterated a fixed number 
 This work has assumed a Boolean map $f$ which is embedded into   
 a discrete-time dynamical system $G_f$.
 This one is supposed to be iterated a fixed number 
-$p_1$ or $p_2$,\ldots, or $p_{\mathds{p}}$ of 
+$p_1$ or $p_2$,\ldots, or $p_{\mathds{p}}$ 
 times before its output is considered. 
 This work has first shown that iterations of
 $G_f$ are chaotic if and only if its iteration graph $\Gamma_{\mathcal{P}}(f)$
 is strongly connected where $\mathcal{P}$ is $\{p_1, \ldots, p_{\mathds{p}}\}$.
 times before its output is considered. 
 This work has first shown that iterations of
 $G_f$ are chaotic if and only if its iteration graph $\Gamma_{\mathcal{P}}(f)$
 is strongly connected where $\mathcal{P}$ is $\{p_1, \ldots, p_{\mathds{p}}\}$.
-Any PRNG, which iterates $G_f$ as above 
-satisfies in some cases the property of chaos.
+It can be deduced that in such a situation a PRNG, which iterates $G_f$,
+satisfies the property of chaos and can be used in simulating chaos 
+phenomena.
 
 We then have shown that a previously presented approach can be directly 
 applied here to generate function $f$ with strongly connected 
 $\Gamma_{\mathcal{P}}(f)$. 
 The iterated map inside the generator is built by first removing from a 
 
 We then have shown that a previously presented approach can be directly 
 applied here to generate function $f$ with strongly connected 
 $\Gamma_{\mathcal{P}}(f)$. 
 The iterated map inside the generator is built by first removing from a 
-$\mathsf{N}$-cube an Hamiltonian path and next 
+$\mathsf{N}$-cube a balanced  Hamiltonian cycle and next 
 by adding  a self loop to each vertex. 
 by adding  a self loop to each vertex. 
-The PRNG can thus be seen as a random walk of length in $\mathsf{P}$
+The PRNG can thus be seen as a random walk of length in $\mathcal{P}$
 into  this new $\mathsf{N}$-cube.
 into  this new $\mathsf{N}$-cube.
-We furthermore have exhibited a bound on the number of iterations 
-that is sufficient to obtain a uniform distribution of the output.
+We have presented an efficient method to compute such a balanced Hamiltonian 
+cycle. This method is an algebraic solution of an undeterministic 
+approach~\cite{ZanSup04} and has a low complexity.
+To the best of the authors knowledge, this is the first time a full 
+automatic method to provide chaotic PRNGs is given.  
+Practically speaking, this approach preserves the security properties of 
+the embedded PRNG, even if it remains quite cost expensive.
+
+
+We furthermore have presented an upper bound on the number of iterations 
+that is sufficient to obtain an uniform distribution of the output.
+Such an upper bound is quadratic on the number of bits to output.
+Experiments have however shown that such a bound is in 
+$\mathsf{N}.\log(\mathsf{N})$ in practice.
 Finally,  experiments through the  NIST battery have shown that
 the statistical properties are almost established for
 Finally,  experiments through the  NIST battery have shown that
 the statistical properties are almost established for
-$\mathsf{N} = 4, 5, 6, 7, 8$.
+ $\mathsf{N} = 4, 5, 6, 7, 8$ and should be observed for any 
+positive integer $\mathsf{N}$.
 
 In future work, we intend to understand the link between 
 statistical tests and the properties of chaos for
 
 In future work, we intend to understand the link between 
 statistical tests and the properties of chaos for