Indeed, the $p=2$ first digits are 01, as $|v^0-\check{v}^0|=1$,
and we use $p$ digits to code this difference ($\mathcal{P}$ being $\{1,2,11\}$, this difference can be equal to 10). We then take the $v^0=1$ first terms of $u$, each term being coded in $n=2$ digits, that is, 06. As we can iterate
at most $\max{(\mathcal{P})}$ times, we must complete this
Indeed, the $p=2$ first digits are 01, as $|v^0-\check{v}^0|=1$,
and we use $p$ digits to code this difference ($\mathcal{P}$ being $\{1,2,11\}$, this difference can be equal to 10). We then take the $v^0=1$ first terms of $u$, each term being coded in $n=2$ digits, that is, 06. As we can iterate
at most $\max{(\mathcal{P})}$ times, we must complete this