In~\cite[Section 4]{DBLP:conf/secrypt/CouchotHGWB14},
-we have presented an efficient
-approach which generates
+we have presented a general scheme which generates
function with strongly connected iteration graph $\Gamma(f)$ and
with doubly stochastic Markov probability matrix.
-Basically, let consider the ${\mathsf{N}}$-cube. Let us next
+Basically, let us consider the ${\mathsf{N}}$-cube. Let us next
remove one Hamiltonian cycle in this one. When an edge $(x,y)$
is removed, an edge $(x,x)$ is added.
There exists thus $b$ such there is an arc between any $x$ and $y$.
\end{proof}
-Details on the construction of hamiltonian paths in the
-$\mathsf{N}$-cube may be found in~\cite[Section 4]{DBLP:conf/secrypt/CouchotHGWB14}.
\ No newline at end of file
+This section ends with the idea of removing a Hamiltonian cycle in the
+$\mathsf{N}$-cube.
+In such a context, the Hamiltonian cycle is equivalent to a Gray code.
+Many approaches have been proposed a way to build such codes, for instance
+the Reflected Binary Code. In this one, one of the bits is switched
+exactly $2^{\mathsf{N}-}$ for a $\mathsf{N}$-length cycle.
+
+%%%%%%%%%%%%%%%%%%%%%
+
+The function that is built
+from the
+
+The next section presents how to build balanced Hamiltonian cycles in the
+$\mathsf{N}$-cube with the objective to embed them into the
+pseudorandom number generator.
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "main"
+%%% ispell-dictionary: "american"
+%%% mode: flyspell
+%%% End: