X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/16dcc.git/blobdiff_plain/36e14b57e13803de510ec32c84df163f86dca6c3..c9d6a79d174af327059607a3e0a1f23ab7921a49:/chaos.tex?ds=inline diff --git a/chaos.tex b/chaos.tex index dafc635..acf42e3 100644 --- a/chaos.tex +++ b/chaos.tex @@ -510,7 +510,8 @@ $$\left\{(e, ((u^0, \dots, u^{v^{k_1-1}},U^0, U^1, \dots),(v^0, \dots, v^{k_1},V $$\left.\forall i,j \in \mathds{N}, U^i \in \llbracket 1, \mathsf{N} \rrbracket, V^j \in \mathcal{P}\right\} \subset \mathcal{B}(x,\varepsilon),$$ and $y=G_f^{k_1}(e,(u,v))$. $\Gamma_{\mathcal{P}}(f)$ being strongly connected, -there is at least a path from the Boolean state $y_1$ of $y$ and $e$ \ANNOT{Phrase pas claire : "from \dots " mais pas de "to \dots"}. +there is at least a path from the Boolean state $y_1$ of $y$ to $e$. +%\ANNOT{Phrase pas claire : "from \dots " mais pas de "to \dots"}. Denote by $a_0, \hdots, a_{k_2}$ the edges of such a path. Then the point:\linebreak $(e,((u^0, \dots, u^{v^{k_1-1}},a_0^0, \dots, a_0^{|a_0|}, a_1^0, \dots, a_1^{|a_1|},\dots,