X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/16dcc.git/blobdiff_plain/3fc31015143d2bab7226a54390f3e1c5eba8f4d5..88225fd8134480c8b1126e301b5e4e089d7c1cdd:/stopping.tex diff --git a/stopping.tex b/stopping.tex index 142da7f..9d7e74f 100644 --- a/stopping.tex +++ b/stopping.tex @@ -1,6 +1,6 @@ This section considers functions $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}} $ issued from an hypercube where an Hamiltonian path has been removed -as described in previous section. +as described in the previous section. Notice that the iteration graph is always a subgraph of ${\mathsf{N}}$-cube augmented with all the self-loop, \textit{i.e.}, all the edges $(v,v)$ for any $v \in \Bool^{\mathsf{N}}$. @@ -137,7 +137,7 @@ In other words, $E$ is the set of all the edges in the classical ${\mathsf{N}}$-cube. Let $h$ be a function from $\Bool^{\mathsf{N}}$ into $\llbracket 1, {\mathsf{N}} \rrbracket$. Intuitively speaking $h$ aims at memorizing for each node -$X \in \Bool^{\mathsf{N}}$ which edge is removed in the Hamiltonian cycle, +$X \in \Bool^{\mathsf{N}}$ whose edge is removed in the Hamiltonian cycle, \textit{i.e.}, which bit in $\llbracket 1, {\mathsf{N}} \rrbracket$ cannot be switched. @@ -164,7 +164,7 @@ P_h(X,Y)=\frac{1}{2{\mathsf{N}}} & \textrm{if $X\neq Y$ and $(X,Y) \in E_h$} We denote by $\ov{h} : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$ the function such that for any $X \in \Bool^{\mathsf{N}} $, $(X,\ov{h}(X)) \in E$ and $X\oplus\ov{h}(X)=0^{{\mathsf{N}}-h(X)}10^{h(X)-1}$. -The function $\ov{h}$ is said {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$, +The function $\ov{h}$ is said to be {\it square-free} if for every $X\in \Bool^{\mathsf{N}}$, $\ov{h}(\ov{h}(X))\neq X$. \begin{lmm}\label{lm:h} @@ -211,7 +211,7 @@ exists $0\leq j