X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/16dcc.git/blobdiff_plain/d68de43fbfbc44e3363780b39401bf1d2683f9d8..1b5eed47c5d9fada5fd208ab9a007f7d4355102e:/hamilton.tex?ds=sidebyside diff --git a/hamilton.tex b/hamilton.tex index 694bbcf..f4dc64a 100644 --- a/hamilton.tex +++ b/hamilton.tex @@ -133,24 +133,62 @@ the code is neither balanced nor totally balanced. \begin{thrm}\label{prop:balanced} Let $\mathsf{N}$ in $\Nats$, and $a_{\mathsf{N}}$ be defined by $a_{\mathsf{N}}= 2 \lfloor \dfrac{2^{\mathsf{N}}}{2\mathsf{N}} \rfloor$. -Then, there exists a sequence $l$ in +There exists then a sequence $l$ in step~(\ref{item:nondet}) of the \emph{Robinson-Cohn extension} algorithm such that all the transition counts $\textit{TC}_{\mathsf{N}}(i)$ are $a_{\mathsf{N}}$ or $a_{\mathsf{N}}+2$ for any $i$, $1 \le i \le \mathsf{N}$. +\end{thrm} -\end{thrm} - - +The proof is done by induction on $\mathsf{N}$. Let us imadialty verify +that it is established for both odd and even smallest values, \textit{i.e.} +$3$ and $4$. +For the initial case where $\mathsf{N}=3$, \textit{i.e.} $\mathsf{N-2}=1$ we successively have: $S_1=1,1$, $l=2$, $u_0 = \emptyset$, and $v=\emptyset$. +Thus again the algorithm successively produces +$U= 1,2,1$, $V = 3$, $W= 2, 1, 1,3$, and $W' = 1,2,1,3$. +Finally, $S_3$ is $1,2,1,3,1,2,1,3$ which obviously verifies the theorem. + For the initial case where $\mathsf{N}=4$, \textit{i.e.} $\mathsf{N-2}=2$ +we successively have: $S_1=1,2,1,2$, $l=4$, +$u_0,u_1,u_2 = \emptyset,\emptyset,\emptyset$, and $v=\emptyset$. +Thus again the algorithm successively produces +$U= 1,3,2,3,4,1,4,3,2$, $V = 4$, $W= 3, 1, 2, 1,2, 4$, and $W' = 1, 3, 2, 1,2, 4 $. +Finally, $S_4$ is +$ +2,3,4,1,4,3,2,3,1,4,1,3,2,1,2,4 +$ +such that $\textit{TC}_4(i) = 4$ and the theorem is established for +odd and even initial values. -\begin{proof} +For the inductive case, let us first define some variables. +Let $c_{\mathsf{N}}$ (resp. $d_{\mathsf{N}}$) be the number of elements +whose transistion count is exactly $a_{\mathsf{N}}$ (resp $a_{\mathsf{N}} +2$). +These two variables are defined by the system + +$$ +\left\{ +\begin{array}{lcl} +c_{\mathsf{N}} + d_{\mathsf{N}} & = & \mathsf{N} \\ +c_{\mathsf{N}}a_{\mathsf{N}} + d_{\mathsf{N}}(a_{\mathsf{N}}+2) & = & 2^{\mathsf{N}} +\end{array} +\right. +\qquad +\Leftrightarrow +\qquad +\left\{ +\begin{array}{lcl} +d_{\mathsf{N}} & = & \dfrac{2^{\mathsf{N} -n.a_{\mathsf{N}}}{2} \\ +c_{\mathsf{N}} = \mathsf{N} - d_{\mathsf{N}} +\end{array} +\right. +$$ +Since $a_{\mathsf{N}$ is even, $d_{\mathsf{N}}$ is defined. +Both $c_{\mathsf{N}}$ and $d_{\mathsf{N}}$ are obviously positves. -\end{proof} \subsection{Toward a local uniform distribution of switches}