X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/16dcc.git/blobdiff_plain/d69591c41135e899d27072006db6af016df62445..31468b39be240f447015be22c252d515b2dcfdac:/chaos.tex diff --git a/chaos.tex b/chaos.tex index d5ab5f9..ec2723a 100644 --- a/chaos.tex +++ b/chaos.tex @@ -245,9 +245,10 @@ $\check{u}^{v^0}$ (on $n$ digits), ..., $\check{u}^{\check{v}^0-1}$ (on $n$ digi +\newcommand{\ns}{$\hspace{.1em}$} \begin{xpl} -Consider for instance that $\mathsf{N}=13$, $\mathcal{P}=\{1,2,11\}$ (so $\mathsf{p}=3$), and that +Consider for instance that $\mathsf{N}=13$, $\mathcal{P}=\{1,2,11\}$ (so $\mathsf{p}=2$), and that $s=\left\{ \begin{array}{l} u=\underline{6,} ~ \underline{11,5}, ...\\ @@ -262,7 +263,7 @@ $\check{s}=\left\{ \end{array} \right.$. -So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.010004000000000000000000011005 ...$ +So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.01\ns00\ns04\ns00\ns00\ns00\ns00\ns00\ns00\ns00\ns00\ns00\ns01\ns10\ns05 ...$ Indeed, the $p=2$ first digits are 01, as $|v^0-\check{v}^0|=1$, and we use $p$ digits to code this difference ($\mathcal{P}$ being $\{1,2,11\}$, this difference can be equal to 10). We then take the $v^0=1$ first terms of $u$, each term being coded in $n=2$ digits, that is, 06. As we can iterate at most $\max{(\mathcal{P})}$ times, we must complete this @@ -425,7 +426,7 @@ $\mathcal{P}=\{2,3\}$. The graphs of iterations are given in The \textsc{Figure~\ref{graphe1}} shows what happens when displaying each iteration result. On the contrary, the \textsc{Figure~\ref{graphe2}} explicits the behaviors -when always applying 2 or 3 modification and next outputing results. +when always applying either 2 or 3 modifications before generating results. Notice that here, orientations of arcs are not necessary since the function $f_0$ is equal to its inverse $f_0^{-1}$. \end{xpl} @@ -479,7 +480,7 @@ Let $y=(e,((u^0, ..., u^{\sum_{l=0}^{k_1}v^l-1}, a_0^0, ..., a_0^{|a_0|}, a_1^0, Conversely, if $\Gamma_{\mathcal{P}}(f)$ is not strongly connected, then there are 2 vertices $e_1$ and $e_2$ such that there is no path between $e_1$ and $e_2$. That is, it is impossible to find $(u,v)\in \mathds{S}_{\mathsf{N},\mathcal{P}}$ -and $n \mathds{N}$ such that $G_f^n(e,(u,v))_1=e_2$. The open ball $\mathcal{B}(e_2, 1/2)$ +and $n\in \mathds{N}$ such that $G_f^n(e,(u,v))_1=e_2$. The open ball $\mathcal{B}(e_2, 1/2)$ cannot be reached from any neighborhood of $e_1$, and thus $G_f$ is not transitive. \end{proof} @@ -498,7 +499,7 @@ $$\left\{(e, ((u^0, ..., u^{v^{k_1-1}},U^0, U^1, ...),(v^0, ..., v^{k_1},V^0, V^ $$\left.\forall i,j \in \mathds{N}, U^i \in \llbracket 1, \mathsf{N} \rrbracket, V^j \in \mathcal{P}\right\} \subset \mathcal{B}(x,\varepsilon),$$ and $y=G_f^{k_1}(e,(u,v))$. $\Gamma_{\mathcal{P}}(f)$ being strongly connected, -there is at least a path from the Boolean state $y_1$ of $y$ and $e$. +there is at least a path from the Boolean state $y_1$ of $y$ and $e$ \ANNOT{Phrase pas claire : "from ... " mais pas de "to ..."}. Denote by $a_0, \hdots, a_{k_2}$ the edges of such a path. Then the point: $$(e,((u^0, ..., u^{v^{k_1-1}},a_0^0, ..., a_0^{|a_0|}, a_1^0, ..., a_1^{|a_1|},..., @@ -521,12 +522,18 @@ and only if its iteration graph $\Gamma_{\mathcal{P}}(f)$ is strongly connected. In this context, $\mathcal{P}$ is the singleton $\{b\}$. If $b$ is even, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach its neighborhood and thus $\Gamma_{\{b\}}(f_0)$ is not strongly connected. - If $b$ is even, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach itself + If $b$ is odd, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach itself and thus $\Gamma_{\{b\}}(f_0)$ is not strongly connected. \end{proof} -The next section shows how to generate functions and a iteration number $b$ +The next section recalls a general scheme to produce +functions and a iteration number $b$ such that $\Gamma_{\{b\}}$ is strongly connected. - \ No newline at end of file +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "main" +%%% ispell-dictionary: "american" +%%% mode: flyspell +%%% End: