X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/16dcc.git/blobdiff_plain/d69591c41135e899d27072006db6af016df62445..bd2919c6b5810121da30faafc9f3b8c6f0155e9e:/biblio.bib diff --git a/biblio.bib b/biblio.bib index c368f01..74701ae 100644 --- a/biblio.bib +++ b/biblio.bib @@ -17,22 +17,6 @@ OPTmonth = {}, } -@inproceedings{chgw14oip, -inhal = {no}, -domainehal = {INFO:INFO_DC, INFO:INFO_CR, INFO:INFO_MO, INFO:INFO_SE}, -equipe = {ie}, -classement = {COM}, -author = {Couchot, Jean-Fran\c{c}ois and H\'eam, Pierre-Cyrille and Guyeux, Christophe and Wang, Qianxue and Bahi, Jacques}, -title = {Pseudorandom Number Generators with Balanced Gray Codes}, -booktitle = {Secrypt 2014, 11th Int. Conf. on Security and Cryptography}, -pages = {469--475}, -address = {Vienna, Austria}, -month = aug, -date = {28-30 aout}, -year = 2014, -note = {Position short paper}, - -} @Misc{GridComp, OPTkey = {}, @@ -917,6 +901,7 @@ year = 2013, pages = "267--272", URL = "http://dx.doi.org/10.1016/j.ipl.2008.10.015", } + @inproceedings{DBLP:conf/secrypt/CouchotHGWB14, author = {Jean{-}Fran{\c{c}}ois Couchot and Pierre{-}Cyrille H{\'{e}}am and @@ -1029,3 +1014,54 @@ year = 2013, ee = {http://arxiv.org/abs/1112.5239} } + + +@article{DBLP:journals/combinatorics/BhatS96, + author = {Girish S. Bhat and + Carla D. Savage}, + title = {Balanced Gray Codes}, + journal = {Electr. J. Comb.}, + volume = {3}, + number = {1}, + year = {1996}, + url = {http://www.combinatorics.org/Volume_3/Abstracts/v3i1r25.html}, + timestamp = {Tue, 05 Oct 2004 14:51:02 +0200}, + biburl = {http://dblp.uni-trier.de/rec/bib/journals/combinatorics/BhatS96}, + bibsource = {dblp computer science bibliography, http://dblp.org} +} + + +@Article{Bykov2016, +author="Bykov, I. S.", +title="On locally balanced gray codes", +journal="Journal of Applied and Industrial Mathematics", +year="2016", +volume="10", +number="1", +pages="78--85", +abstract="We consider locally balanced Gray codes.We say that a Gray code is locally balanced if every ``short'' subword in its transition sequence contains all letters of the alphabet |1, 2,..., n{\textasciitilde}. The minimal length of these subwords is the window width of the code. We show that for each n ≥ 3 there exists a Gray code with window width at most n + 3⌊log n⌋.", +issn="1990-4797", +doi="10.1134/S1990478916010099", +url="http://dx.doi.org/10.1134/S1990478916010099" +} + + +@article{Robinson:1981:CS, + author = {Robinson, John P. and Cohn, Martin}, + title = {Counting Sequences}, + journal = {IEEE Trans. Comput.}, + issue_date = {January 1981}, + volume = {30}, + number = {1}, + month = jan, + year = {1981}, + issn = {0018-9340}, + pages = {17--23}, + numpages = {7}, + url = {http://dl.acm.org/citation.cfm?id=1963620.1963622}, + acmid = {1963622}, + publisher = {IEEE Computer Society}, + address = {Washington, DC, USA}, + keywords = {circuit testing, counters, gray codes, hamming distance, transition counts, uniform distance}, +} +