X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/16dcc.git/blobdiff_plain/d69591c41135e899d27072006db6af016df62445..bd2919c6b5810121da30faafc9f3b8c6f0155e9e:/generating.tex?ds=inline diff --git a/generating.tex b/generating.tex index 5b0d393..3d22441 100644 --- a/generating.tex +++ b/generating.tex @@ -7,12 +7,11 @@ if and only if its Markov matrix is a doubly stochastic matrix. In~\cite[Section 4]{DBLP:conf/secrypt/CouchotHGWB14}, -we have presented an efficient -approach which generates +we have presented a general scheme which generates function with strongly connected iteration graph $\Gamma(f)$ and with doubly stochastic Markov probability matrix. -Basically, let consider the ${\mathsf{N}}$-cube. Let us next +Basically, let us consider the ${\mathsf{N}}$-cube. Let us next remove one Hamiltonian cycle in this one. When an edge $(x,y)$ is removed, an edge $(x,x)$ is added. @@ -62,5 +61,25 @@ It has been shown in~\cite[Lemma 3]{bcgr11:ip} that $M$ is regular. There exists thus $b$ such there is an arc between any $x$ and $y$. \end{proof} -Details on the construction of hamiltonian paths in the -$\mathsf{N}$-cube may be found in~\cite[Section 4]{DBLP:conf/secrypt/CouchotHGWB14}. \ No newline at end of file +This section ends with the idea of removing a Hamiltonian cycle in the +$\mathsf{N}$-cube. +In such a context, the Hamiltonian cycle is equivalent to a Gray code. +Many approaches have been proposed a way to build such codes, for instance +the Reflected Binary Code. In this one, one of the bits is switched +exactly $2^{\mathsf{N}-}$ for a $\mathsf{N}$-length cycle. + +%%%%%%%%%%%%%%%%%%%%% + +The function that is built +from the + +The next section presents how to build balanced Hamiltonian cycles in the +$\mathsf{N}$-cube with the objective to embed them into the +pseudorandom number generator. + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "main" +%%% ispell-dictionary: "american" +%%% mode: flyspell +%%% End: