X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/16dcc.git/blobdiff_plain/e944a6e5c1d0ba117954365dfedad16f183cf681..705f6ebe2219797761eb1fd336de90f287787a29:/chaos.tex?ds=inline diff --git a/chaos.tex b/chaos.tex index 122c0ad..511a11a 100644 --- a/chaos.tex +++ b/chaos.tex @@ -247,7 +247,7 @@ $\check{u}^{v^0}$ (on $n$ digits), ..., $\check{u}^{\check{v}^0-1}$ (on $n$ digi \begin{xpl} -Consider for instance that $\mathsf{N}=13$, $\mathcal{P}=\{1,2,11\}$ (so $\mathsf{p}=3$), and that +Consider for instance that $\mathsf{N}=13$, $\mathcal{P}=\{1,2,11\}$ (so $\mathsf{p}=2$), and that $s=\left\{ \begin{array}{l} u=\underline{6,} ~ \underline{11,5}, ...\\ @@ -425,7 +425,7 @@ $\mathcal{P}=\{2,3\}$. The graphs of iterations are given in The \textsc{Figure~\ref{graphe1}} shows what happens when displaying each iteration result. On the contrary, the \textsc{Figure~\ref{graphe2}} explicits the behaviors -when always applying 2 or 3 modification and next outputing results. +when always applying either 2 or 3 modifications before generating results. Notice that here, orientations of arcs are not necessary since the function $f_0$ is equal to its inverse $f_0^{-1}$. \end{xpl} @@ -521,7 +521,7 @@ and only if its iteration graph $\Gamma_{\mathcal{P}}(f)$ is strongly connected. In this context, $\mathcal{P}$ is the singleton $\{b\}$. If $b$ is even, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach its neighborhood and thus $\Gamma_{\{b\}}(f_0)$ is not strongly connected. - If $b$ is even, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach itself + If $b$ is odd, any vertex $e$ of $\Gamma_{\{b\}}(f_0)$ cannot reach itself and thus $\Gamma_{\{b\}}(f_0)$ is not strongly connected. \end{proof} @@ -530,4 +530,9 @@ functions and a iteration number $b$ such that $\Gamma_{\{b\}}$ is strongly connected. - \ No newline at end of file +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "main" +%%% ispell-dictionary: "american" +%%% mode: flyspell +%%% End: