]> AND Private Git Repository - 16dcc.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
pch, section 6
authorPierre-Cyrille Héam <pheam@femto-st.fr>
Mon, 27 Jun 2016 12:49:08 +0000 (14:49 +0200)
committerPierre-Cyrille Héam <pheam@femto-st.fr>
Mon, 27 Jun 2016 12:49:08 +0000 (14:49 +0200)
main.pdf
stopping.tex

index 4f393a062c5fbaec199b8b1b95bb334f62f5d7e1..49fc1448d654a78f05fba70489eca70e2b4c944c 100644 (file)
Binary files a/main.pdf and b/main.pdf differ
index 989bb9eee1f7cb01b79d4b91bf71f0cc22f1e8f4..aa13c9ab8812ba567820cbfe01c38196ecbbe83a 100644 (file)
@@ -33,7 +33,7 @@ P=\dfrac{1}{6} \left(
 0&0&0&0&1&0&4&1 \\
 0&0&0&1&0&1&0&4 
 \end{array}
 0&0&0&0&1&0&4&1 \\
 0&0&0&1&0&1&0&4 
 \end{array}
-\right)
+\right).
 \]
 \end{xpl}
 
 \]
 \end{xpl}
 
@@ -69,9 +69,13 @@ and
 
 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
 
 
 $$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
 
-Intuitively speaking, $t_{\rm mix}$ is a mixing time 
-\textit{i.e.}, is the time until the matrix $X$ of a Markov chain  
-is $\epsilon$-close to a stationary distribution.
+%% Intuitively speaking, $t_{\rm mix}$ is a mixing time 
+%% \textit{i.e.}, is the time until the matrix $X$ of a Markov chain  
+%% is $\epsilon$-close to a stationary distribution.
+
+Intutively speaking,  $t_{\rm mix}(\varepsilon)$ is the time/steps required
+to be sure to be $\varepsilon$-close to the staionary distribution, wherever
+the chain starts. 
 
 
 
 
 
 
@@ -115,7 +119,7 @@ $$\P_X(X_\tau=Y)=\pi(Y).$$
 
 
 A stopping time $\tau$ is a {\emph strong stationary time} if $X_{\tau}$ is
 
 
 A stopping time $\tau$ is a {\emph strong stationary time} if $X_{\tau}$ is
-independent of $\tau$. 
+independent of $\tau$. The following result will be useful~\cite[Proposition~6.10]{LevinPeresWilmer2006},
 
 
 \begin{thrm}\label{thm-sst}
 
 
 \begin{thrm}\label{thm-sst}
@@ -231,7 +235,8 @@ This probability is independent of the value of the other bits.
 Moving next in the chain, at each step,
 the $l$-th bit  is switched from $0$ to $1$ or from $1$ to $0$ each time with
 the same probability. Therefore,  for $t\geq \tau_\ell$, the
 Moving next in the chain, at each step,
 the $l$-th bit  is switched from $0$ to $1$ or from $1$ to $0$ each time with
 the same probability. Therefore,  for $t\geq \tau_\ell$, the
-$\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability, proving the
+$\ell$-th bit of $X_t$ is $0$ or $1$ with the same probability,  and
+independently of the value of the other bits, proving the
 lemma.\end{proof}
 
 \begin{thrm} \label{prop:stop}
 lemma.\end{proof}
 
 \begin{thrm} \label{prop:stop}
@@ -345,7 +350,7 @@ direct application of lemma~\ref{prop:lambda} and~\ref{lm:stopprime}.
 \end{proof}
 
 Now using Markov Inequality, one has $\P_X(\tau > t)\leq \frac{E[\tau]}{t}$.
 \end{proof}
 
 Now using Markov Inequality, one has $\P_X(\tau > t)\leq \frac{E[\tau]}{t}$.
-With $t=32N^2+16N\ln (N+1)$, one obtains:  $\P_X(\tau > t)\leq \frac{1}{4}$. 
+With $t_n=32N^2+16N\ln (N+1)$, one obtains:  $\P_X(\tau > t_n)\leq \frac{1}{4}$. 
 Therefore, using the defintion of $t_{\rm mix)}$ and
 Theorem~\ref{thm-sst}, it follows that
 $t_{\rm mix}\leq 32N^2+16N\ln (N+1)=O(N^2)$.
 Therefore, using the defintion of $t_{\rm mix)}$ and
 Theorem~\ref{thm-sst}, it follows that
 $t_{\rm mix}\leq 32N^2+16N\ln (N+1)=O(N^2)$.
@@ -354,11 +359,11 @@ $t_{\rm mix}\leq 32N^2+16N\ln (N+1)=O(N^2)$.
 Notice that the calculus of the stationary time upper bound is obtained
 under the following constraint: for each vertex in the $\mathsf{N}$-cube 
 there are one ongoing arc and one outgoing arc that are removed. 
 Notice that the calculus of the stationary time upper bound is obtained
 under the following constraint: for each vertex in the $\mathsf{N}$-cube 
 there are one ongoing arc and one outgoing arc that are removed. 
-The calculus does not consider (balanced) Hamiltonian cycles, which 
+The calculus doesn't consider (balanced) Hamiltonian cycles, which 
 are more regular and more binding than this constraint.
 Moreover, the bound
 are more regular and more binding than this constraint.
 Moreover, the bound
-is obtained using Markov Inequality which is frequently coarse. For the
-classical random walkin the  $\mathsf{N}$-cube, without removing any
+is obtained using the coarse Markov Inequality. For the
+classical (lazzy) random walk the  $\mathsf{N}$-cube, without removing any
 Hamiltonian cylce, the mixing time is in $\Theta(N\ln N)$. 
 We conjecture that in our context, the mixing time is also in $\Theta(N\ln
 N)$.
 Hamiltonian cylce, the mixing time is in $\Theta(N\ln N)$. 
 We conjecture that in our context, the mixing time is also in $\Theta(N\ln
 N)$.