From: couchot Date: Tue, 6 Dec 2016 21:24:10 +0000 (+0100) Subject: modif presentation b X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/16dcc.git/commitdiff_plain/b67a97afb3770294e649ce1a1ed53af685be00b9?ds=inline modif presentation b --- diff --git a/presPRNG.tex b/presPRNG.tex index a8b11b3..304c4e4 100644 --- a/presPRNG.tex +++ b/presPRNG.tex @@ -114,11 +114,11 @@ \item For cryptography: cryptographically secure \item Successful pass on PRNG batteries of tests: NIST\footnote{E.~Barker and A.~Roginsky. -\newblock Draft {N}{I}{S}{T} special publication 800-131 recommendation for the + Draft {N}{I}{S}{T} special publication 800-131 recommendation for the transitioning of cryptographic algorithms and key sizes, 2010.}, DieHARD\footnote{G.~Marsaglia. -\newblock DieHARD: a battery of tests of randomness. -\newblock {\em http://stat.fsu.edu/~geo/diehard.html}, 1996} + DieHARD: a battery of tests of randomness. + {\em http://stat.fsu.edu/~geo/diehard.html}, 1996} \item Should have chaos properties \end{itemize} \end{itemize} @@ -171,10 +171,9 @@ f^*(x_1,x_2,x_3) = \begin{exampleblock}{Previous work} To provide a PRNG with the properties of Devaney's chaos and of succeeding NIST test: a (non-chaotic) PRNG + iterating a Boolean maps~\footnote{J. Bahi, J.-F. Couchot, C. Guyeux, and A. Richard. -\newblock On the link between strongly connected iteration graphs and chaotic + On the link between strongly connected iteration graphs and chaotic Boolean discrete-time dynamical systems, {\em - Fundamentals of Computation Theory}, volume 6914 of {\em Lecture Notes in - Computer Science}, pages 126--137. Springer Berlin Heidelberg, 2011.}: + Fundamentals of Computation Theory}, volume 6914 of {\em LNCS}, pages 126--137. Springer, 2011.}: \begin{itemize} \item with strongly connected iteration graph $\Gamma(f)$ \item with doubly stochastic Markov probability matrix @@ -199,7 +198,7 @@ resulting Markov matrix is doubly stochastic. \begin{itemize} \item Focus on the generation of Hamiltonian cycles in the $n$-cube - \item To find cyclic Gray codes. + \item Find cyclic Gray codes. \end{itemize} \end{block} \footnote{Couchot, J., Héam, P., Guyeux, C., Wang, Q., Bahi, J. M. [2014]