/** * An extremely minimal crypto library for Arduino devices. * * The SHA256 and AES implementations are derived from axTLS * (http://axtls.sourceforge.net/), Copyright (c) 2008, Cameron Rich. * * Ported and refactored by Chris Ellis 2016. * */ #include /** * Byte order helpers */ //#if BYTE_ORDER == BIG_ENDIAN /* inline static uint16_t crypto_htons(uint16_t x) { return x; } inline static uint16_t crypto_ntohs(uint16_t x) { return x; } inline static uint32_t crypto_htonl(uint32_t x) { return x; } inline static uint32_t crypto_ntohl(uint32_t x) { return x; } */ //#else inline static uint16_t crypto_htons(uint16_t x) { return ( ((x & 0xff) << 8) | ((x & 0xff00) >> 8) ); } inline static uint16_t crypto_ntohs(uint16_t x) { return ( ((x & 0xff) << 8) | ((x & 0xff00) >> 8) ); } inline static uint32_t crypto_htonl(uint32_t x) { return ( ((x & 0xff) << 24) | ((x & 0xff00) << 8) | ((x & 0xff0000UL) >> 8) | ((x & 0xff000000UL) >> 24) ); } inline static uint32_t crypto_ntohl(uint32_t x) { return ( ((x & 0xff) << 24) | ((x & 0xff00) << 8) | ((x & 0xff0000UL) >> 8) | ((x & 0xff000000UL) >> 24) ); } //#endif #define GET_UINT32(n,b,i) \ { \ (n) = ((uint32_t) (b)[(i) ] << 24) \ | ((uint32_t) (b)[(i) + 1] << 16) \ | ((uint32_t) (b)[(i) + 2] << 8) \ | ((uint32_t) (b)[(i) + 3] ); \ } #define PUT_UINT32(n,b,i) \ { \ (b)[(i) ] = (byte) ((n) >> 24); \ (b)[(i) + 1] = (byte) ((n) >> 16); \ (b)[(i) + 2] = (byte) ((n) >> 8); \ (b)[(i) + 3] = (byte) ((n) ); \ } static const byte sha256_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /** * Initialize the SHA256 hash */ SHA256::SHA256() { total[0] = 0; total[1] = 0; state[0] = 0x6A09E667; state[1] = 0xBB67AE85; state[2] = 0x3C6EF372; state[3] = 0xA54FF53A; state[4] = 0x510E527F; state[5] = 0x9B05688C; state[6] = 0x1F83D9AB; state[7] = 0x5BE0CD19; } void SHA256::SHA256_Process(const byte digest[64]) { uint32_t temp1, temp2, W[64]; uint32_t A, B, C, D, E, F, G, H; GET_UINT32(W[0], digest, 0); GET_UINT32(W[1], digest, 4); GET_UINT32(W[2], digest, 8); GET_UINT32(W[3], digest, 12); GET_UINT32(W[4], digest, 16); GET_UINT32(W[5], digest, 20); GET_UINT32(W[6], digest, 24); GET_UINT32(W[7], digest, 28); GET_UINT32(W[8], digest, 32); GET_UINT32(W[9], digest, 36); GET_UINT32(W[10], digest, 40); GET_UINT32(W[11], digest, 44); GET_UINT32(W[12], digest, 48); GET_UINT32(W[13], digest, 52); GET_UINT32(W[14], digest, 56); GET_UINT32(W[15], digest, 60); #define SHR(x,n) ((x & 0xFFFFFFFF) >> n) #define ROTR(x,n) (SHR(x,n) | (x << (32 - n))) #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3)) #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25)) #define F0(x,y,z) ((x & y) | (z & (x | y))) #define F1(x,y,z) (z ^ (x & (y ^ z))) #define R(t) \ ( \ W[t] = S1(W[t - 2]) + W[t - 7] + \ S0(W[t - 15]) + W[t - 16] \ ) #define P(a,b,c,d,e,f,g,h,x,K) \ { \ temp1 = h + S3(e) + F1(e,f,g) + K + x; \ temp2 = S2(a) + F0(a,b,c); \ d += temp1; h = temp1 + temp2; \ } A = state[0]; B = state[1]; C = state[2]; D = state[3]; E = state[4]; F = state[5]; G = state[6]; H = state[7]; P(A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98); P(H, A, B, C, D, E, F, G, W[ 1], 0x71374491); P(G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF); P(F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5); P(E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B); P(D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1); P(C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4); P(B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5); P(A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98); P(H, A, B, C, D, E, F, G, W[ 9], 0x12835B01); P(G, H, A, B, C, D, E, F, W[10], 0x243185BE); P(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3); P(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74); P(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE); P(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7); P(B, C, D, E, F, G, H, A, W[15], 0xC19BF174); P(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1); P(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786); P(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6); P(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC); P(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F); P(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA); P(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC); P(B, C, D, E, F, G, H, A, R(23), 0x76F988DA); P(A, B, C, D, E, F, G, H, R(24), 0x983E5152); P(H, A, B, C, D, E, F, G, R(25), 0xA831C66D); P(G, H, A, B, C, D, E, F, R(26), 0xB00327C8); P(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7); P(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3); P(D, E, F, G, H, A, B, C, R(29), 0xD5A79147); P(C, D, E, F, G, H, A, B, R(30), 0x06CA6351); P(B, C, D, E, F, G, H, A, R(31), 0x14292967); P(A, B, C, D, E, F, G, H, R(32), 0x27B70A85); P(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138); P(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC); P(F, G, H, A, B, C, D, E, R(35), 0x53380D13); P(E, F, G, H, A, B, C, D, R(36), 0x650A7354); P(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB); P(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E); P(B, C, D, E, F, G, H, A, R(39), 0x92722C85); P(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1); P(H, A, B, C, D, E, F, G, R(41), 0xA81A664B); P(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70); P(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3); P(E, F, G, H, A, B, C, D, R(44), 0xD192E819); P(D, E, F, G, H, A, B, C, R(45), 0xD6990624); P(C, D, E, F, G, H, A, B, R(46), 0xF40E3585); P(B, C, D, E, F, G, H, A, R(47), 0x106AA070); P(A, B, C, D, E, F, G, H, R(48), 0x19A4C116); P(H, A, B, C, D, E, F, G, R(49), 0x1E376C08); P(G, H, A, B, C, D, E, F, R(50), 0x2748774C); P(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5); P(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3); P(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A); P(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F); P(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3); P(A, B, C, D, E, F, G, H, R(56), 0x748F82EE); P(H, A, B, C, D, E, F, G, R(57), 0x78A5636F); P(G, H, A, B, C, D, E, F, R(58), 0x84C87814); P(F, G, H, A, B, C, D, E, R(59), 0x8CC70208); P(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA); P(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB); P(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7); P(B, C, D, E, F, G, H, A, R(63), 0xC67178F2); state[0] += A; state[1] += B; state[2] += C; state[3] += D; state[4] += E; state[5] += F; state[6] += G; state[7] += H; } /** * Accepts an array of octets as the next portion of the message. */ void SHA256::doUpdate(const byte * msg, int len) { uint32_t left = total[0] & 0x3F; uint32_t fill = 64 - left; total[0] += len; total[0] &= 0xFFFFFFFF; if (total[0] < len) total[1]++; if (left && len >= fill) { memcpy((void *) (buffer + left), (void *) msg, fill); SHA256::SHA256_Process(buffer); len -= fill; msg += fill; left = 0; } while (len >= 64) { SHA256::SHA256_Process(msg); len -= 64; msg += 64; } if (len) { memcpy((void *) (buffer + left), (void *) msg, len); } } /** * Return the 256-bit message digest into the user's array */ void SHA256::doFinal(byte *digest) { uint32_t last, padn; uint32_t high, low; byte msglen[8]; high = (total[0] >> 29) | (total[1] << 3); low = (total[0] << 3); PUT_UINT32(high, msglen, 0); PUT_UINT32(low, msglen, 4); last = total[0] & 0x3F; padn = (last < 56) ? (56 - last) : (120 - last); SHA256::doUpdate(sha256_padding, padn); SHA256::doUpdate(msglen, 8); PUT_UINT32(state[0], digest, 0); PUT_UINT32(state[1], digest, 4); PUT_UINT32(state[2], digest, 8); PUT_UINT32(state[3], digest, 12); PUT_UINT32(state[4], digest, 16); PUT_UINT32(state[5], digest, 20); PUT_UINT32(state[6], digest, 24); PUT_UINT32(state[7], digest, 28); } bool SHA256::matches(const byte *expected) { byte theDigest[SHA256_SIZE]; doFinal(theDigest); for (byte i = 0; i < SHA256_SIZE; i++) { if (expected[i] != theDigest[i]) return false; } return true; } /******************************************************************************/ #define rot1(x) (((x) << 24) | ((x) >> 8)) #define rot2(x) (((x) << 16) | ((x) >> 16)) #define rot3(x) (((x) << 8) | ((x) >> 24)) /* * This cute trick does 4 'mul by two' at once. Stolen from * Dr B. R. Gladman but I'm sure the u-(u>>7) is * a standard graphics trick * The key to this is that we need to xor with 0x1b if the top bit is set. * a 1xxx xxxx 0xxx 0xxx First we mask the 7bit, * b 1000 0000 0000 0000 then we shift right by 7 putting the 7bit in 0bit, * c 0000 0001 0000 0000 we then subtract (c) from (b) * d 0111 1111 0000 0000 and now we and with our mask * e 0001 1011 0000 0000 */ #define mt 0x80808080 #define ml 0x7f7f7f7f #define mh 0xfefefefe #define mm 0x1b1b1b1b #define mul2(x,t) ((t)=((x)&mt), \ ((((x)+(x))&mh)^(((t)-((t)>>7))&mm))) #define inv_mix_col(x,f2,f4,f8,f9) (\ (f2)=mul2(x,f2), \ (f4)=mul2(f2,f4), \ (f8)=mul2(f4,f8), \ (f9)=(x)^(f8), \ (f8)=((f2)^(f4)^(f8)), \ (f2)^=(f9), \ (f4)^=(f9), \ (f8)^=rot3(f2), \ (f8)^=rot2(f4), \ (f8)^rot1(f9)) /* * AES S-box */ static const uint8_t aes_sbox[256] = { 0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5, 0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76, 0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0, 0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0, 0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC, 0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15, 0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A, 0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75, 0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0, 0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84, 0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B, 0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF, 0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85, 0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8, 0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5, 0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2, 0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17, 0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73, 0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88, 0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB, 0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C, 0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79, 0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9, 0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08, 0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6, 0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A, 0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E, 0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E, 0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94, 0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF, 0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68, 0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16, }; /* * AES is-box */ static const uint8_t aes_isbox[256] = { 0x52,0x09,0x6a,0xd5,0x30,0x36,0xa5,0x38, 0xbf,0x40,0xa3,0x9e,0x81,0xf3,0xd7,0xfb, 0x7c,0xe3,0x39,0x82,0x9b,0x2f,0xff,0x87, 0x34,0x8e,0x43,0x44,0xc4,0xde,0xe9,0xcb, 0x54,0x7b,0x94,0x32,0xa6,0xc2,0x23,0x3d, 0xee,0x4c,0x95,0x0b,0x42,0xfa,0xc3,0x4e, 0x08,0x2e,0xa1,0x66,0x28,0xd9,0x24,0xb2, 0x76,0x5b,0xa2,0x49,0x6d,0x8b,0xd1,0x25, 0x72,0xf8,0xf6,0x64,0x86,0x68,0x98,0x16, 0xd4,0xa4,0x5c,0xcc,0x5d,0x65,0xb6,0x92, 0x6c,0x70,0x48,0x50,0xfd,0xed,0xb9,0xda, 0x5e,0x15,0x46,0x57,0xa7,0x8d,0x9d,0x84, 0x90,0xd8,0xab,0x00,0x8c,0xbc,0xd3,0x0a, 0xf7,0xe4,0x58,0x05,0xb8,0xb3,0x45,0x06, 0xd0,0x2c,0x1e,0x8f,0xca,0x3f,0x0f,0x02, 0xc1,0xaf,0xbd,0x03,0x01,0x13,0x8a,0x6b, 0x3a,0x91,0x11,0x41,0x4f,0x67,0xdc,0xea, 0x97,0xf2,0xcf,0xce,0xf0,0xb4,0xe6,0x73, 0x96,0xac,0x74,0x22,0xe7,0xad,0x35,0x85, 0xe2,0xf9,0x37,0xe8,0x1c,0x75,0xdf,0x6e, 0x47,0xf1,0x1a,0x71,0x1d,0x29,0xc5,0x89, 0x6f,0xb7,0x62,0x0e,0xaa,0x18,0xbe,0x1b, 0xfc,0x56,0x3e,0x4b,0xc6,0xd2,0x79,0x20, 0x9a,0xdb,0xc0,0xfe,0x78,0xcd,0x5a,0xf4, 0x1f,0xdd,0xa8,0x33,0x88,0x07,0xc7,0x31, 0xb1,0x12,0x10,0x59,0x27,0x80,0xec,0x5f, 0x60,0x51,0x7f,0xa9,0x19,0xb5,0x4a,0x0d, 0x2d,0xe5,0x7a,0x9f,0x93,0xc9,0x9c,0xef, 0xa0,0xe0,0x3b,0x4d,0xae,0x2a,0xf5,0xb0, 0xc8,0xeb,0xbb,0x3c,0x83,0x53,0x99,0x61, 0x17,0x2b,0x04,0x7e,0xba,0x77,0xd6,0x26, 0xe1,0x69,0x14,0x63,0x55,0x21,0x0c,0x7d }; static const unsigned char Rcon[30]= { 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80, 0x1b,0x36,0x6c,0xd8,0xab,0x4d,0x9a,0x2f, 0x5e,0xbc,0x63,0xc6,0x97,0x35,0x6a,0xd4, 0xb3,0x7d,0xfa,0xef,0xc5,0x91, }; /* Perform doubling in Galois Field GF(2^8) using the irreducible polynomial x^8+x^4+x^3+x+1 */ static unsigned char AES_xtime(uint32_t x) { return (x&0x80) ? (x<<1)^0x1b : x<<1; } /** * Encrypt a single block (16 bytes) of data */ void AES::encrypt(uint32_t *data) { /* To make this code smaller, generate the sbox entries on the fly. * This will have a really heavy effect upon performance. */ uint32_t tmp[4]; uint32_t tmp1, old_a0, a0, a1, a2, a3, row; int curr_rnd; int rounds = _rounds; const uint32_t *k = _ks; /* Pre-round key addition */ for (row = 0; row < 4; row++) data[row] ^= *(k++); /* Encrypt one block. */ for (curr_rnd = 0; curr_rnd < rounds; curr_rnd++) { /* Perform ByteSub and ShiftRow operations together */ for (row = 0; row < 4; row++) { a0 = (uint32_t)aes_sbox[(data[row%4]>>24)&0xFF]; a1 = (uint32_t)aes_sbox[(data[(row+1)%4]>>16)&0xFF]; a2 = (uint32_t)aes_sbox[(data[(row+2)%4]>>8)&0xFF]; a3 = (uint32_t)aes_sbox[(data[(row+3)%4])&0xFF]; /* Perform MixColumn iff not last round */ if (curr_rnd < (rounds - 1)) { tmp1 = a0 ^ a1 ^ a2 ^ a3; old_a0 = a0; a0 ^= tmp1 ^ AES_xtime(a0 ^ a1); a1 ^= tmp1 ^ AES_xtime(a1 ^ a2); a2 ^= tmp1 ^ AES_xtime(a2 ^ a3); a3 ^= tmp1 ^ AES_xtime(a3 ^ old_a0); } tmp[row] = ((a0 << 24) | (a1 << 16) | (a2 << 8) | a3); } /* KeyAddition - note that it is vital that this loop is separate from the MixColumn operation, which must be atomic...*/ for (row = 0; row < 4; row++) data[row] = tmp[row] ^ *(k++); } } /** * Decrypt a single block (16 bytes) of data */ void AES::decrypt(uint32_t *data) { uint32_t tmp[4]; uint32_t xt0,xt1,xt2,xt3,xt4,xt5,xt6; uint32_t a0, a1, a2, a3, row; int curr_rnd; int rounds = _rounds; const uint32_t *k = _ks + ((rounds+1)*4); /* pre-round key addition */ for (row=4; row > 0;row--) data[row-1] ^= *(--k); /* Decrypt one block */ for (curr_rnd = 0; curr_rnd < rounds; curr_rnd++) { /* Perform ByteSub and ShiftRow operations together */ for (row = 4; row > 0; row--) { a0 = aes_isbox[(data[(row+3)%4]>>24)&0xFF]; a1 = aes_isbox[(data[(row+2)%4]>>16)&0xFF]; a2 = aes_isbox[(data[(row+1)%4]>>8)&0xFF]; a3 = aes_isbox[(data[row%4])&0xFF]; /* Perform MixColumn iff not last round */ if (curr_rnd<(rounds-1)) { /* The MDS cofefficients (0x09, 0x0B, 0x0D, 0x0E) are quite large compared to encryption; this operation slows decryption down noticeably. */ xt0 = AES_xtime(a0^a1); xt1 = AES_xtime(a1^a2); xt2 = AES_xtime(a2^a3); xt3 = AES_xtime(a3^a0); xt4 = AES_xtime(xt0^xt1); xt5 = AES_xtime(xt1^xt2); xt6 = AES_xtime(xt4^xt5); xt0 ^= a1^a2^a3^xt4^xt6; xt1 ^= a0^a2^a3^xt5^xt6; xt2 ^= a0^a1^a3^xt4^xt6; xt3 ^= a0^a1^a2^xt5^xt6; tmp[row-1] = ((xt0<<24)|(xt1<<16)|(xt2<<8)|xt3); } else tmp[row-1] = ((a0<<24)|(a1<<16)|(a2<<8)|a3); } for (row = 4; row > 0; row--) data[row-1] = tmp[row-1] ^ *(--k); } } AES::AES(const uint8_t *key, const uint8_t *iv, AES_MODE mode, CIPHER_MODE cipherMode) { _cipherMode = cipherMode; int i, ii; uint32_t *W, tmp, tmp2; const unsigned char *ip; int words; switch (mode) { case AES_MODE_128: i = 10; words = 4; break; case AES_MODE_256: i = 14; words = 8; break; default: /* fail silently */ return; } _rounds = i; _key_size = words; W = _ks; for (i = 0; i < words; i+=2) { W[i+0]= ((uint32_t)key[ 0]<<24)| ((uint32_t)key[ 1]<<16)| ((uint32_t)key[ 2]<< 8)| ((uint32_t)key[ 3] ); W[i+1]= ((uint32_t)key[ 4]<<24)| ((uint32_t)key[ 5]<<16)| ((uint32_t)key[ 6]<< 8)| ((uint32_t)key[ 7] ); key += 8; } ip = Rcon; ii = 4 * (_rounds+1); for (i = words; i> 8)&0xff]<<16; tmp2|=(uint32_t)aes_sbox[(tmp>>16)&0xff]<<24; tmp2|=(uint32_t)aes_sbox[(tmp>>24) ]; tmp=tmp2^(((unsigned int)*ip)<<24); ip++; } if ((words == 8) && ((i % words) == 4)) { tmp2 =(uint32_t)aes_sbox[(tmp )&0xff] ; tmp2|=(uint32_t)aes_sbox[(tmp>> 8)&0xff]<< 8; tmp2|=(uint32_t)aes_sbox[(tmp>>16)&0xff]<<16; tmp2|=(uint32_t)aes_sbox[(tmp>>24) ]<<24; tmp=tmp2; } W[i]=W[i-words]^tmp; } /* copy the iv across */ memcpy(_iv, iv, 16); /* Do we need to convert the key */ if (_cipherMode == CIPHER_DECRYPT) { convertKey(); } } void AES::process(const uint8_t *in, uint8_t *out, int length) { if (_cipherMode == CIPHER_ENCRYPT) encryptCBC(in, out, length); else decryptCBC(in, out, length); } void AES::encryptCBC(const uint8_t *in, uint8_t *out, int length) { int i; uint32_t tin[4], tout[4], iv[4]; memcpy(iv, _iv, AES_IV_SIZE); for (i = 0; i < 4; i++) tout[i] = crypto_ntohl(iv[i]); for (length -= AES_BLOCKSIZE; length >= 0; length -= AES_BLOCKSIZE) { uint32_t msg_32[4]; uint32_t out_32[4]; memcpy(msg_32, in, AES_BLOCKSIZE); in += AES_BLOCKSIZE; for (i = 0; i < 4; i++) tin[i] = crypto_ntohl(msg_32[i])^tout[i]; AES::encrypt(tin); for (i = 0; i < 4; i++) { tout[i] = tin[i]; out_32[i] = crypto_htonl(tout[i]); } memcpy(out, out_32, AES_BLOCKSIZE); out += AES_BLOCKSIZE; } for (i = 0; i < 4; i++) iv[i] = crypto_htonl(tout[i]); memcpy(_iv, iv, AES_IV_SIZE); } void AES::decryptCBC(const uint8_t *in, uint8_t *out, int length) { int i; uint32_t tin[4], bufxor[4], tout[4], data[4], iv[4]; memcpy(iv, _iv, AES_IV_SIZE); for (i = 0; i < 4; i++) bufxor[i] = crypto_ntohl(iv[i]); for (length -= 16; length >= 0; length -= 16) { uint32_t msg_32[4]; uint32_t out_32[4]; memcpy(msg_32, in, AES_BLOCKSIZE); in += AES_BLOCKSIZE; for (i = 0; i < 4; i++) { tin[i] = crypto_ntohl(msg_32[i]); data[i] = tin[i]; } AES::decrypt(data); for (i = 0; i < 4; i++) { tout[i] = data[i] ^ bufxor[i]; bufxor[i] = tin[i]; out_32[i] = crypto_htonl(tout[i]); } memcpy(out, out_32, AES_BLOCKSIZE); out += AES_BLOCKSIZE; } for (i = 0; i < 4; i++) iv[i] = crypto_htonl(bufxor[i]); memcpy(_iv, iv, AES_IV_SIZE); } void AES::convertKey() { int i; uint32_t *k,w,t1,t2,t3,t4; k = _ks; k += 4; for (i= _rounds*4; i > 4; i--) { w= *k; w = inv_mix_col(w,t1,t2,t3,t4); *k++ =w; } } /** * ESP8266 specific RNG which use seems to use the hardware RNG provided on * the chip */ void RNG::fill(uint8_t *dst, unsigned int length) { // ESP8266 only for (int i = 0; i < length; i++) { dst[i] = get(); } } byte RNG::get() { // ESP8266 only uint32_t* randReg = (uint32_t*) 0x3FF20E44L; return (byte) *randReg; } uint32_t RNG::getLong() { // ESP8266 only uint32_t* randReg = (uint32_t*) 0x3FF20E44L; return *randReg; } /** * SHA256 HMAC */ SHA256HMAC::SHA256HMAC(const byte *key, unsigned int keyLen) { // sort out the key byte theKey[SHA256HMAC_BLOCKSIZE]; memset(theKey, 0, SHA256HMAC_BLOCKSIZE); if (keyLen > SHA256HMAC_BLOCKSIZE) { // take a hash of the key SHA256 keyHahser; keyHahser.doUpdate(key, keyLen); keyHahser.doFinal(theKey); } else { // we already set the buffer to 0s, so just copy keyLen // bytes from key memcpy(theKey, key, keyLen); } // explicitly zero pads memset(_innerKey, 0, SHA256HMAC_BLOCKSIZE); memset(_outerKey, 0, SHA256HMAC_BLOCKSIZE); // compute the keys blockXor(theKey, _innerKey, HMAC_IPAD, SHA256HMAC_BLOCKSIZE); blockXor(theKey, _outerKey, HMAC_OPAD, SHA256HMAC_BLOCKSIZE); // start the intermediate hash _hash.doUpdate(_innerKey, SHA256HMAC_BLOCKSIZE); } void SHA256HMAC::doUpdate(const byte *msg, unsigned int len) { _hash.doUpdate(msg, len); } void SHA256HMAC::doFinal(byte *digest) { // compute the intermediate hash byte interHash[SHA256_SIZE]; _hash.doFinal(interHash); // compute the final hash SHA256 finalHash; finalHash.doUpdate(_outerKey, SHA256HMAC_BLOCKSIZE); finalHash.doUpdate(interHash, SHA256_SIZE); finalHash.doFinal(digest); } bool SHA256HMAC::matches(const byte *expected) { byte theDigest[SHA256_SIZE]; doFinal(theDigest); for (byte i = 0; i < SHA256_SIZE; i++) { if (expected[i] != theDigest[i]) return false; } return true; } void SHA256HMAC::blockXor(const byte *in, byte *out, byte val, byte len) { for (byte i = 0; i < len; i++) { out[i] = in[i] ^ val; } }