inline uchar circ(uchar x,int n) {return (x << n) | (x >> (8 - n));}
-uint64_t xorshift64( const uint64_t state)
+inline static uint64_t xorshift64( const uint64_t state)
{
uint64_t x = state;
x^= x << 13;
}
-static inline uint64_t splitmix64(uint64_t index) {
+inline static uint64_t splitmix64(uint64_t index) {
uint64_t z = (index + UINT64_C(0x9E3779B97F4A7C15));
z = (z ^ (z >> 30)) * UINT64_C(0xBF58476D1CE4E5B9);
z = (z ^ (z >> 27)) * UINT64_C(0x94D049BB133111EB);
//the proposed hash function, which is based on DSD structure. Sensitivity is ensured by employing the binary diffusion
-void hash_DSD_BIN(uchar* seq_in, uchar* RM1,int len, uchar *S, int h) {
+void hash_DSD_BIN(uint64_t * ss, uint64_t* rm,int len,int h) {
- // Goal: Calculate the hash value
- // Output: RM (hash value)
- uchar X[h];
- int ind1,ind2;
+ int ind1=0;
- uint64_t *rm=(uint64_t*)RM1;
- // uint64_t *xx=(uint64_t*)X;
- uint64_t *ss=(uint64_t*)seq_in;
- int a;
+ int a=0;
+
for(int it=0;it<len;it++) {
- ind1=(it*h)>>3;
- // Mix with dynamic RM
- rm[0]=rm[0]^ss[ind1];
+ rm[0]=rm[h-1]^ss[ind1];
rm[0]=xorshift64(rm[0] );
- for(a=1;a<(h>>3);a++) {
- rm[a]=rm[a]^ss[ind1+a];
- rm[a]=xorshift64(rm[a] ^ rm[a-1]);
+ for(a=1;a<h;a++) {
+ rm[a]=rm[a-1]^ss[ind1+a];
+ rm[a]=xorshift64(rm[a]);
}
- rm[0]=xorshift64(rm[a] ^ rm[0] );
+
+ ind1+=h;
}
if(change==1) {
seq[4]++;
- seq[5]--;
+ // seq[5]--;
}
if(change==2) {
seq[9]++;
- seq[10]--;
+ // seq[10]--;
}
printf("seq 4 %d\n",seq[4]);
time=0;
+ uint64_t *rm=(uint64_t*)RM1;
+ uint64_t *ss=(uint64_t*)seq;
+
+
+
t=TimeStart();
for(int i=0;i<nb_test;i++)
{
- hash_DSD_BIN(seq, RM1,len,Sbox1,h);
+ hash_DSD_BIN(ss, rm,len,h>>3);
}