-The next two chapters explore a few methods which are considered currently to be among the
-most important iterative techniques available for solving large linear systems. These techniques
-are based on projection processes, both orthogonal and oblique, onto Krylov subspaces, which
-are subspaces spanned by vectors of the form p(A)v where p is a polynomial. In short, these
-techniques approximate A −1 b by p(A)b, where p is a “good” polynomial. This chapter covers
-methods derived from, or related to, the Arnoldi orthogonalization. The next chapter covers
-methods based on Lanczos biorthogonalization.
+%The next two chapters explore a few methods which are considered currently to be among the most important iterative techniques available for solving large linear systems. These techniques are based on projection processes, both orthogonal and oblique, onto Krylov subspaces, which are subspaces spanned by vectors of the form p(A)v where p is a polynomial. In short, these techniques approximate A −1 b by p(A)b, where p is a “good” polynomial. This chapter covers methods derived from, or related to, the Arnoldi orthogonalization. The next chapter covers methods based on Lanczos biorthogonalization.