+
+
+In order to perform larger experiments, we have tested some example application
+of PETSc. Those applications are available in the ksp part which is suited for
+scalable linear equations solvers:
+\begin{itemize}
+\item ex15 is an example which solves in parallel an operator using a finite
+ difference scheme. The diagonal is equals to 4 and 4 extra-diagonals
+ representing the neighbors in each directions is equal to -1. This example is
+ used in many physical phenomena, for example, heat and fluid flow, wave
+ propagation...
+\item ex54 is another example based on 2D problem discretized with quadrilateral
+ finite elements. For this example, the user can define the scaling of material
+ coefficient in embedded circle, it is called $\alpha$.
+\end{itemize}
+For more technical details on these applications, interested reader are invited
+to read the codes available in the PETSc sources. Those problem have been
+chosen because they are scalable with many cores. We have tested other problem
+but they are not scalable with many cores.
+
+
+
+
+\begin{table*}
+\begin{center}
+\begin{tabular}{|r|r|r|r|r|r|r|r|r|}
+\hline
+
+ nb. cores & precond & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} & \multicolumn{2}{c|}{TSARM LSQR} & best gain \\
+\cline{3-8}
+ & & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline
+ 2,048 & mg & 403.49 & 18,210 & 73.89 & 3,060 & 77.84 & 3,270 & 5.46 \\
+ 2,048 & sor & 745.37 & 57,060 & 87.31 & 6,150 & 104.21 & 7,230 & 8.53 \\
+ 4,096 & mg & 562.25 & 25,170 & 97.23 & 3,990 & 89.71 & 3,630 & 6.27 \\
+ 4,096 & sor & 912.12 & 70,194 & 145.57 & 9,750 & 168.97 & 10,980 & 6.26 \\
+ 8,192 & mg & 917.02 & 40,290 & 148.81 & 5,730 & 143.03 & 5,280 & 6.41 \\
+ 8,192 & sor & 1,404.53 & 106,530 & 212.55 & 12,990 & 180.97 & 10,470 & 7.76 \\
+ 16,384 & mg & 1,430.56 & 63,930 & 237.17 & 8,310 & 244.26 & 7,950 & 6.03 \\
+ 16,384 & sor & 2,852.14 & 216,240 & 418.46 & 21,690 & 505.26 & 23,970 & 6.82 \\
+\hline
+
+\end{tabular}
+\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex15 of Petsc with 25000 components per core on Juqueen (threshold 1e-3, restart=30, s=12), time is expressed in seconds.}
+\label{tab:03}
+\end{center}
+\end{table*}
+
+
+\begin{figure}
+\centering
+ \includegraphics[width=0.45\textwidth]{nb_iter_sec_ex15_juqueen}
+\caption{Number of iterations per second with ex15 and the same parameters than in Table~\ref{tab:03}}
+\label{fig:01}
+\end{figure}
+
+
+
+
+
+\begin{table*}
+\begin{center}
+\begin{tabular}{|r|r|r|r|r|r|r|r|r|}
+\hline
+
+ nb. cores & threshold & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} & \multicolumn{2}{c|}{TSARM LSQR} & best gain \\
+\cline{3-8}
+ & & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline
+ 2,048 & 8e-5 & 108.88 & 16,560 & 23.06 & 3,630 & 22.79 & 3,630 & 4.77 \\
+ 2,048 & 6e-5 & 194.01 & 30,270 & 35.50 & 5,430 & 27.74 & 4,350 & 6.99 \\
+ 4,096 & 7e-5 & 160.59 & 22,530 & 35.15 & 5,130 & 29.21 & 4,350 & 5.49 \\
+ 4,096 & 6e-5 & 249.27 & 35,520 & 52.13 & 7,950 & 39.24 & 5,790 & 6.35 \\
+ 8,192 & 6e-5 & 149.54 & 17,280 & 28.68 & 3,810 & 29.05 & 3,990 & 5.21 \\
+ 8,192 & 5e-5 & 785.04 & 109,590 & 76.07 & 10,470 & 69.42 & 9,030 & 11.30 \\
+ 16,384 & 4e-5 & 718.61 & 86,400 & 98.98 & 10,830 & 131.86 & 14,790 & 7.26 \\
+\hline
+
+\end{tabular}
+\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25000 components per core on Curie (restart=30, s=12), time is expressed in seconds.}
+\label{tab:04}
+\end{center}
+\end{table*}
+
+
+
+
+
+\begin{table*}
+\begin{center}
+\begin{tabular}{|r|r|r|r|r|r|r|r|r|r|r|}
+\hline
+
+ nb. cores & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} & \multicolumn{2}{c|}{TSARM LSQR} & best gain & \multicolumn{3}{c|}{efficiency} \\
+\cline{2-7} \cline{9-11}
+ & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & & GMRES & TS CGLS & TS LSQR\\\hline \hline
+ 512 & 3,969.69 & 33,120 & 709.57 & 5,790 & 622.76 & 5,070 & 6.37 & 1 & 1 & 1 \\
+ 1024 & 1,530.06 & 25,860 & 290.95 & 4,830 & 307.71 & 5,070 & 5.25 & 1.30 & 1.21 & 1.01 \\
+ 2048 & 919.62 & 31,470 & 237.52 & 8,040 & 194.22 & 6,510 & 4.73 & 1.08 & .75 & .80\\
+ 4096 & 405.60 & 28,380 & 111.67 & 7,590 & 91.72 & 6,510 & 4.42 & 1.22 & .79 & .84 \\
+ 8192 & 785.04 & 109,590 & 76.07 & 10,470 & 69.42 & 9,030 & 11.30 & .32 & .58 & .56 \\
+
+\hline
+
+\end{tabular}
+\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores (restart=30, s=12, threshol 5e-5), time is expressed in seconds.}
+\label{tab:05}
+\end{center}
+\end{table*}
+