]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
10-10-2014 07
[GMRES2stage.git] / paper.tex
index 9f8ded7a800afc4de8d6c0a1716518f70059d553..b0ec8513cbcb5e86bbe545c64e7c8d2c16998cf3 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 % quality.
 
 
 % quality.
 
 
-%\usepackage{eqparbox}
+\usepackage{eqparbox}
 % Also of notable interest is Scott Pakin's eqparbox package for creating
 % (automatically sized) equal width boxes - aka "natural width parboxes".
 % Available at:
 % Also of notable interest is Scott Pakin's eqparbox package for creating
 % (automatically sized) equal width boxes - aka "natural width parboxes".
 % Available at:
 %
 % paper title
 % can use linebreaks \\ within to get better formatting as desired
 %
 % paper title
 % can use linebreaks \\ within to get better formatting as desired
-\title{TSARM: A Two-Stage Algorithm with least-square Residual Minimization to solve large sparse linear systems}
-%où
-%\title{A two-stage algorithm with error minimization to solve large sparse linear systems}
-%où
-%\title{???}
+\title{TSIRM: A Two-Stage Iteration with least-squares Residual Minimization algorithm to solve large sparse linear systems}
+
 
 
 
 
 
 
@@ -428,16 +425,17 @@ Email: lilia.ziane@inria.fr}
 
 
 \begin{abstract}
 
 
 \begin{abstract}
-In  this article,  a  two-stage  iterative method is proposed to improve  the
-convergence of Krylov based iterative ones,  typically those of GMRES variants. The
-principle of  the proposed approach  is to  build an external  iteration over  the Krylov
-method, and to  frequently store its current  residual   (at  each
-GMRES restart for instance). After a given number of outer iterations, a minimization
-step  is applied  on the  matrix composed by the  saved residuals,  in  order to
-compute a better solution while making  new iterations if required.  It is proven that
-the proposal has  the same convergence properties than the  inner embedded method itself. 
-Experiments using up  to 16,394 cores also show that the proposed algorithm
-run around 7 times faster than GMRES.
+In  this article, a  two-stage iterative  algorithm is  proposed to  improve the
+convergence  of  Krylov  based  iterative  methods,  typically  those  of  GMRES
+variants.  The  principle of  the  proposed approach  is  to  build an  external
+iteration over the  Krylov method, and to frequently  store its current residual
+(at each GMRES restart for instance).  After a given number of outer iterations,
+a least-squares minimization step is applied on the matrix composed by the saved
+residuals, in order  to compute a better solution and to  make new iterations if
+required.  It  is proven that the  proposal has the  same convergence properties
+than the  inner embedded  method itself.  Experiments  using up to  16,394 cores
+also  show that the  proposed algorithm  runs around  5 or  7 times  faster than
+GMRES.
 \end{abstract}
 
 \begin{IEEEkeywords}
 \end{abstract}
 
 \begin{IEEEkeywords}
@@ -584,7 +582,7 @@ performances.
 
 The present  article is  organized as follows.   Related works are  presented in
 Section~\ref{sec:02}. Section~\ref{sec:03} details the two-stage algorithm using
 
 The present  article is  organized as follows.   Related works are  presented in
 Section~\ref{sec:02}. Section~\ref{sec:03} details the two-stage algorithm using
-a  least-square  residual   minimization,  while  Section~\ref{sec:04}  provides
+a  least-squares  residual   minimization,  while  Section~\ref{sec:04}  provides
 convergence  results  regarding this  method.   Section~\ref{sec:05} shows  some
 experimental  results  obtained  on  large  clusters  using  routines  of  PETSc
 toolkit. This research work ends by  a conclusion section, in which the proposal
 convergence  results  regarding this  method.   Section~\ref{sec:05} shows  some
 experimental  results  obtained  on  large  clusters  using  routines  of  PETSc
 toolkit. This research work ends by  a conclusion section, in which the proposal
@@ -607,7 +605,7 @@ is summarized while intended perspectives are provided.
 
 %%%*********************************************************
 %%%*********************************************************
 
 %%%*********************************************************
 %%%*********************************************************
-\section{Two-stage algorithm with least-square residuals minimization}
+\section{Two-stage iteration with least-squares residuals minimization algorithm}
 \label{sec:03}
 A two-stage algorithm is proposed  to solve large  sparse linear systems  of the
 form  $Ax=b$,  where  $A\in\mathbb{R}^{n\times   n}$  is  a  sparse  and  square
 \label{sec:03}
 A two-stage algorithm is proposed  to solve large  sparse linear systems  of the
 form  $Ax=b$,  where  $A\in\mathbb{R}^{n\times   n}$  is  a  sparse  and  square
@@ -618,7 +616,7 @@ inner-outer iteration  solver based  on iterative Krylov  methods. The  main
 key-points of the proposed solver are given in Algorithm~\ref{algo:01}.
 It can be summarized as follows: the
 inner solver is a Krylov based one. In order to accelerate its convergence, the 
 key-points of the proposed solver are given in Algorithm~\ref{algo:01}.
 It can be summarized as follows: the
 inner solver is a Krylov based one. In order to accelerate its convergence, the 
-outer solver periodically applies a least-square minimization  on the residuals computed by  the inner one. %Tsolver which does not required to be changed.
+outer solver periodically applies a least-squares minimization  on the residuals computed by  the inner one. %Tsolver which does not required to be changed.
 
 At each outer iteration, the sparse linear system $Ax=b$ is partially 
 solved using only $m$
 
 At each outer iteration, the sparse linear system $Ax=b$ is partially 
 solved using only $m$
@@ -629,8 +627,8 @@ inner solver. The current approximation of the Krylov method is then stored insi
 $S$ composed by the successive solutions that are computed during inner iterations.
 
 At each $s$ iterations, the minimization step is applied in order to
 $S$ composed by the successive solutions that are computed during inner iterations.
 
 At each $s$ iterations, the minimization step is applied in order to
-compute a new  solution $x$. For that, the previous  residuals are computed with
-$(b-AS)$. The minimization of the residuals is obtained by 
+compute a new  solution $x$. For that, the previous  residuals of $Ax=b$ are computed by
+the inner iterations with $(b-AS)$. The minimization of the residuals is obtained by  
 \begin{equation}
    \underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2
 \label{eq:01}
 \begin{equation}
    \underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2
 \label{eq:01}
@@ -639,25 +637,25 @@ with $R=AS$. Then the new solution $x$ is computed with $x=S\alpha$.
 
 
 In  practice, $R$  is a  dense rectangular  matrix belonging in  $\mathbb{R}^{n\times s}$,
 
 
 In  practice, $R$  is a  dense rectangular  matrix belonging in  $\mathbb{R}^{n\times s}$,
-with $s\ll n$.   In order  to minimize~(\eqref{eq:01}), a  least-square method  such as
+with $s\ll n$.   In order  to minimize~\eqref{eq:01}, a  least-squares method  such as
 CGLS ~\cite{Hestenes52}  or LSQR~\cite{Paige82} is used. Remark that these  methods are more
 appropriate than a single direct method in a parallel context.
 
 
 
 \begin{algorithm}[t]
 CGLS ~\cite{Hestenes52}  or LSQR~\cite{Paige82} is used. Remark that these  methods are more
 appropriate than a single direct method in a parallel context.
 
 
 
 \begin{algorithm}[t]
-\caption{TSARM}
+\caption{TSIRM}
 \begin{algorithmic}[1]
   \Input $A$ (sparse matrix), $b$ (right-hand side)
   \Output $x$ (solution vector)\vspace{0.2cm}
   \State Set the initial guess $x^0$
 \begin{algorithmic}[1]
   \Input $A$ (sparse matrix), $b$ (right-hand side)
   \Output $x$ (solution vector)\vspace{0.2cm}
   \State Set the initial guess $x^0$
-  \For {$k=1,2,3,\ldots$ until convergence (error$<\epsilon_{tsarm}$)} \label{algo:conv}
+  \For {$k=1,2,3,\ldots$ until convergence (error$<\epsilon_{tsirm}$)} \label{algo:conv}
     \State  $x^k=Solve(A,b,x^{k-1},max\_iter_{kryl})$   \label{algo:solve}
     \State retrieve error
     \State $S_{k \mod s}=x^k$ \label{algo:store}
     \If {$k \mod s=0$ {\bf and} error$>\epsilon_{kryl}$}
       \State $R=AS$ \Comment{compute dense matrix} \label{algo:matrix_mul}
     \State  $x^k=Solve(A,b,x^{k-1},max\_iter_{kryl})$   \label{algo:solve}
     \State retrieve error
     \State $S_{k \mod s}=x^k$ \label{algo:store}
     \If {$k \mod s=0$ {\bf and} error$>\epsilon_{kryl}$}
       \State $R=AS$ \Comment{compute dense matrix} \label{algo:matrix_mul}
-            \State Solve least-square problem $\underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2$ \label{algo:}
+            \State $\alpha=Solve\_Least\_Squares(R,b,max\_iter_{ls})$ \label{algo:}
       \State $x^k=S\alpha$  \Comment{compute new solution}
     \EndIf
   \EndFor
       \State $x^k=S\alpha$  \Comment{compute new solution}
     \EndIf
   \EndFor
@@ -670,54 +668,56 @@ iteration is  inside the for  loop. Line~\ref{algo:solve}, the Krylov  method is
 called for a  maximum of $max\_iter_{kryl}$ iterations.  In practice, we  suggest to set this parameter
 equals to  the restart  number of the  GMRES-like method. Moreover,  a tolerance
 threshold must be specified for the  solver. In practice, this threshold must be
 called for a  maximum of $max\_iter_{kryl}$ iterations.  In practice, we  suggest to set this parameter
 equals to  the restart  number of the  GMRES-like method. Moreover,  a tolerance
 threshold must be specified for the  solver. In practice, this threshold must be
-much  smaller  than the  convergence  threshold  of  the TSARM  algorithm  (\emph{i.e.}
-$\epsilon_{tsarm}$).  Line~\ref{algo:store}, $S_{k~ mod~ s}=x^k$ consists in copying the
+much  smaller  than the  convergence  threshold  of  the TSIRM  algorithm  (\emph{i.e.}
+$\epsilon_{tsirm}$).  Line~\ref{algo:store}, $S_{k~ mod~ s}=x^k$ consists in copying the
 solution  $x_k$  into the  column  $k~ mod~ s$ of  the  matrix  $S$. After  the
 minimization, the matrix $S$ is reused with the new values of the residuals.  To
 solve the minimization problem, an  iterative method is used. Two parameters are
 solution  $x_k$  into the  column  $k~ mod~ s$ of  the  matrix  $S$. After  the
 minimization, the matrix $S$ is reused with the new values of the residuals.  To
 solve the minimization problem, an  iterative method is used. Two parameters are
-required for that: the maximum number of iteration and the threshold to stop the
+required for that: the maximum number of iterations and the threshold to stop the
 method.
 
 method.
 
-Let us summarize the most important parameters of TSARM:
+Let us summarize the most important parameters of TSIRM:
 \begin{itemize}
 \begin{itemize}
-\item $\epsilon_{tsarm}$: the threshold to stop the TSARM method;
+\item $\epsilon_{tsirm}$: the threshold to stop the TSIRM method;
 \item $max\_iter_{kryl}$: the maximum number of iterations for the Krylov method;
 \item $s$: the number of outer iterations before applying the minimization step;
 \item $max\_iter_{kryl}$: the maximum number of iterations for the Krylov method;
 \item $s$: the number of outer iterations before applying the minimization step;
-\item $max\_iter_{ls}$: the maximum number of iterations for the iterative least-square method;
-\item $\epsilon_{ls}$: the threshold used to stop the least-square method.
+\item $max\_iter_{ls}$: the maximum number of iterations for the iterative least-squares method;
+\item $\epsilon_{ls}$: the threshold used to stop the least-squares method.
 \end{itemize}
 
 
 \end{itemize}
 
 
-The  parallelisation  of  TSARM  relies   on  the  parallelization  of  all  its
-parts. More  precisely, except  the least-square step,  all the other  parts are
+The  parallelisation  of  TSIRM  relies   on  the  parallelization  of  all  its
+parts. More  precisely, except  the least-squares step,  all the other  parts are
 obvious to  achieve out in parallel. In  order to develop a  parallel version of
 our   code,   we   have   chosen  to   use   PETSc~\cite{petsc-web-page}.    For
 line~\ref{algo:matrix_mul} the  matrix-matrix multiplication is  implemented and
 efficient since the  matrix $A$ is sparse and since the  matrix $S$ contains few
 colums in  practice. As explained  previously, at least  two methods seem  to be
 obvious to  achieve out in parallel. In  order to develop a  parallel version of
 our   code,   we   have   chosen  to   use   PETSc~\cite{petsc-web-page}.    For
 line~\ref{algo:matrix_mul} the  matrix-matrix multiplication is  implemented and
 efficient since the  matrix $A$ is sparse and since the  matrix $S$ contains few
 colums in  practice. As explained  previously, at least  two methods seem  to be
-interesting to solve the least-square minimization, CGLS and LSQR.
+interesting to solve the least-squares minimization, CGLS and LSQR.
 
 In the following  we remind the CGLS algorithm. The LSQR  method follows more or
 
 In the following  we remind the CGLS algorithm. The LSQR  method follows more or
-less the same principle but it take more place, so we briefly explain the parallelization of CGLS which is similar to LSQR.
+less the same principle but it takes more place, so we briefly explain the parallelization of CGLS which is similar to LSQR.
 
 \begin{algorithm}[t]
 \caption{CGLS}
 \begin{algorithmic}[1]
   \Input $A$ (matrix), $b$ (right-hand side)
   \Output $x$ (solution vector)\vspace{0.2cm}
 
 \begin{algorithm}[t]
 \caption{CGLS}
 \begin{algorithmic}[1]
   \Input $A$ (matrix), $b$ (right-hand side)
   \Output $x$ (solution vector)\vspace{0.2cm}
-  \State $r=b-Ax$
-  \State $p=A'r$
-  \State $s=p$
-  \State $g=||s||^2_2$
-  \For {$k=1,2,3,\ldots$ until convergence (g$<\epsilon_{ls}$)} \label{algo2:conv}
-    \State $q=Ap$
-    \State $\alpha=g/||q||^2_2$
-    \State $x=x+alpha*p$
-    \State $r=r-alpha*q$
-    \State $s=A'*r$
-    \State $g_{old}=g$
-    \State $g=||s||^2_2$
-    \State $\beta=g/g_{old}$
+  \State Let $x_0$ be an initial approximation
+  \State $r_0=b-Ax_0$
+  \State $p_1=A^Tr_0$
+  \State $s_0=p_1$
+  \State $\gamma=||s_0||^2_2$
+  \For {$k=1,2,3,\ldots$ until convergence ($\gamma<\epsilon_{ls}$)} \label{algo2:conv}
+    \State $q_k=Ap_k$
+    \State $\alpha_k=\gamma/||q_k||^2_2$
+    \State $x_k=x_{k-1}+\alpha_kp_k$
+    \State $r_k=r_{k-1}-\alpha_kq_k$
+    \State $s_k=A^Tr_k$
+    \State $\gamma_{old}=\gamma$
+    \State $\gamma=||s_k||^2_2$
+    \State $\beta_k=\gamma/\gamma_{old}$
+    \State $p_{k+1}=s_k+\beta_kp_k$
   \EndFor
 \end{algorithmic}
 \label{algo:02}
   \EndFor
 \end{algorithmic}
 \label{algo:02}
@@ -725,7 +725,7 @@ less the same principle but it take more place, so we briefly explain the parall
 
 
 In each iteration  of CGLS, there is two  matrix-vector multiplications and some
 
 
 In each iteration  of CGLS, there is two  matrix-vector multiplications and some
-classical operations:  dots, norm, multiplication  and addition on  vectors. All
+classical operations:  dot product, norm, multiplication  and addition on  vectors. All
 these operations are easy to implement in PETSc or similar environment.
 
 
 these operations are easy to implement in PETSc or similar environment.
 
 
@@ -757,18 +757,18 @@ In order to see the influence of our algorithm with only one processor, we first
 show  a comparison  with the  standard version  of GMRES  and our  algorithm. In
 Table~\ref{tab:01},  we  show  the  matrices  we  have used  and  some  of  them
 characteristics. For all  the matrices, the name, the field,  the number of rows
 show  a comparison  with the  standard version  of GMRES  and our  algorithm. In
 Table~\ref{tab:01},  we  show  the  matrices  we  have used  and  some  of  them
 characteristics. For all  the matrices, the name, the field,  the number of rows
-and the number of nonzero elements is given.
+and the number of nonzero elements are given.
 
 
-\begin{table*}
+\begin{table}[htbp]
 \begin{center}
 \begin{tabular}{|c|c|r|r|r|} 
 \hline
 Matrix name              & Field             &\# Rows   & \# Nonzeros   \\\hline \hline
 crashbasis         & Optimization      & 160,000  &  1,750,416  \\
 \begin{center}
 \begin{tabular}{|c|c|r|r|r|} 
 \hline
 Matrix name              & Field             &\# Rows   & \# Nonzeros   \\\hline \hline
 crashbasis         & Optimization      & 160,000  &  1,750,416  \\
-parabolic\_fem     & Computational fluid dynamics  & 525,825 & 2,100,225 \\
+parabolic\_fem     & Comput. fluid dynamics  & 525,825 & 2,100,225 \\
 epb3               & Thermal problem   & 84,617  & 463,625  \\
 epb3               & Thermal problem   & 84,617  & 463,625  \\
-atmosmodj          & Computational fluid dynamics  & 1,270,432 & 8,814,880 \\
-bfwa398            & Electromagnetics problem & 398 & 3,678 \\
+atmosmodj          & Comput. fluid dynamics  & 1,270,432 & 8,814,880 \\
+bfwa398            & Electromagnetics pb & 398 & 3,678 \\
 torso3             & 2D/3D problem & 259,156 & 4,429,042 \\
 \hline
 
 torso3             & 2D/3D problem & 259,156 & 4,429,042 \\
 \hline
 
@@ -776,14 +776,14 @@ torso3             & 2D/3D problem & 259,156 & 4,429,042 \\
 \caption{Main characteristics of the sparse matrices chosen from the Davis collection}
 \label{tab:01}
 \end{center}
 \caption{Main characteristics of the sparse matrices chosen from the Davis collection}
 \label{tab:01}
 \end{center}
-\end{table*}
+\end{table}
 
 The following  parameters have been chosen  for our experiments.   As by default
 the restart  of GMRES is performed every  30 iterations, we have  chosen to stop
 
 The following  parameters have been chosen  for our experiments.   As by default
 the restart  of GMRES is performed every  30 iterations, we have  chosen to stop
-the GMRES every 30 iterations, $max\_iter_{kryl}=30$).  $s$ is set to 8. CGLS is
+the GMRES every 30 iterations (\emph{i.e.} $max\_iter_{kryl}=30$).  $s$ is set to 8. CGLS is
 chosen  to minimize  the least-squares  problem with  the  following parameters:
 $\epsilon_{ls}=1e-40$ and $max\_iter_{ls}=20$.  The external precision is set to
 chosen  to minimize  the least-squares  problem with  the  following parameters:
 $\epsilon_{ls}=1e-40$ and $max\_iter_{ls}=20$.  The external precision is set to
-$\epsilon_{tsarm}=1e-10$.  Those  experiments have been performed  on a Intel(R)
+$\epsilon_{tsirm}=1e-10$.  Those  experiments have been performed  on a Intel(R)
 Core(TM) i7-3630QM CPU @ 2.40GHz with the version 3.5.1 of PETSc.
 
 
 Core(TM) i7-3630QM CPU @ 2.40GHz with the version 3.5.1 of PETSc.
 
 
@@ -791,20 +791,20 @@ In  Table~\ref{tab:02}, some  experiments comparing  the solving  of  the linear
 systems obtained with the previous matrices  with a GMRES variant and with out 2
 stage algorithm are  given. In the second column, it can  be noticed that either
 gmres or fgmres is used to  solve the linear system.  According to the matrices,
 systems obtained with the previous matrices  with a GMRES variant and with out 2
 stage algorithm are  given. In the second column, it can  be noticed that either
 gmres or fgmres is used to  solve the linear system.  According to the matrices,
-different  preconditioner is used.   With TSARM,  the same  solver and  the same
-preconditionner is used.  This Table shows that TSARM can drastically reduce the
+different  preconditioner is used.   With TSIRM,  the same  solver and  the same
+preconditionner are used.  This Table shows that TSIRM can drastically reduce the
 number of iterations to reach the  convergence when the number of iterations for
 the normal GMRES is more or less  greater than 500. In fact this also depends on
 tow  parameters: the  number  of iterations  to  stop GMRES  and  the number  of
 iterations to perform the minimization.
 
 
 number of iterations to reach the  convergence when the number of iterations for
 the normal GMRES is more or less  greater than 500. In fact this also depends on
 tow  parameters: the  number  of iterations  to  stop GMRES  and  the number  of
 iterations to perform the minimization.
 
 
-\begin{table}
+\begin{table}[htbp]
 \begin{center}
 \begin{tabular}{|c|c|r|r|r|r|} 
 \hline
 
 \begin{center}
 \begin{tabular}{|c|c|r|r|r|r|} 
 \hline
 
- \multirow{2}{*}{Matrix name}  & Solver /   & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} \\ 
+ \multirow{2}{*}{Matrix name}  & Solver /   & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSIRM CGLS} \\ 
 \cline{3-6}
        &  precond             & Time  & \# Iter.  & Time  & \# Iter.  \\\hline \hline
 
 \cline{3-6}
        &  precond             & Time  & \# Iter.  & Time  & \# Iter.  \\\hline \hline
 
@@ -826,12 +826,12 @@ torso3             & fgmres / sor  & 37.70 & 565 & 34.97 & 510 \\
 
 
 
 
 
 
-In order to perform larger  experiments, we have tested some example application
+In order to perform larger  experiments, we have tested some example applications
 of PETSc. Those  applications are available in the ksp part  which is suited for
 scalable linear equations solvers:
 \begin{itemize}
 \item ex15  is an example  which solves in  parallel an operator using  a finite
 of PETSc. Those  applications are available in the ksp part  which is suited for
 scalable linear equations solvers:
 \begin{itemize}
 \item ex15  is an example  which solves in  parallel an operator using  a finite
-  difference  scheme.   The  diagonal  is  equals to  4  and  4  extra-diagonals
+  difference  scheme.   The  diagonal  is  equal to  4  and  4  extra-diagonals
   representing the neighbors in each directions  is equal to -1. This example is
   used  in many  physical phenomena, for  example, heat  and fluid  flow, wave
   propagation...
   representing the neighbors in each directions  is equal to -1. This example is
   used  in many  physical phenomena, for  example, heat  and fluid  flow, wave
   propagation...
@@ -849,12 +849,12 @@ In the following larger experiments are described on two large scale architectur
 
 {\bf Description of preconditioners}
 
 
 {\bf Description of preconditioners}
 
-\begin{table*}
+\begin{table*}[htbp]
 \begin{center}
 \begin{tabular}{|r|r|r|r|r|r|r|r|r|} 
 \hline
 
 \begin{center}
 \begin{tabular}{|r|r|r|r|r|r|r|r|r|} 
 \hline
 
-  nb. cores & precond   & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSARM CGLS} &  \multicolumn{2}{c|}{TSARM LSQR} & best gain \\ 
+  nb. cores & precond   & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} &  \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\ 
 \cline{3-8}
              &                       & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. & \\\hline \hline
   2,048      & mg                    & 403.49   & 18,210    & 73.89  & 3,060   & 77.84  & 3,270  & 5.46 \\
 \cline{3-8}
              &                       & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. & \\\hline \hline
   2,048      & mg                    & 403.49   & 18,210    & 73.89  & 3,060   & 77.84  & 3,270  & 5.46 \\
@@ -868,7 +868,7 @@ In the following larger experiments are described on two large scale architectur
 \hline
 
 \end{tabular}
 \hline
 
 \end{tabular}
-\caption{Comparison of FGMRES and TSARM with FGMRES for example ex15 of PETSc with two preconditioner (mg and sor) with 25,000 components per core on Juqueen (threshold 1e-3, restart=30, s=12),  time is expressed in seconds.}
+\caption{Comparison of FGMRES and TSIRM with FGMRES for example ex15 of PETSc with two preconditioner (mg and sor) with 25,000 components per core on Juqueen (threshold 1e-3, restart=30, s=12),  time is expressed in seconds.}
 \label{tab:03}
 \end{center}
 \end{table*}
 \label{tab:03}
 \end{center}
 \end{table*}
@@ -877,32 +877,54 @@ Table~\ref{tab:03} shows  the execution  times and the  number of  iterations of
 example ex15  of PETSc on the  Juqueen architecture. Differents  number of cores
 are  studied rangin  from  2,048  upto 16,383.   Two  preconditioners have  been
 tested.   For those experiments,  the number  of components  (or unknown  of the
 example ex15  of PETSc on the  Juqueen architecture. Differents  number of cores
 are  studied rangin  from  2,048  upto 16,383.   Two  preconditioners have  been
 tested.   For those experiments,  the number  of components  (or unknown  of the
-problems)  per processor is  fixed to  25,000. This  number can  seem relatively
-small. In fact, for  some applications that need a lot of  memory, the number of
-components per processor requires sometimes to be small.
-
-In this Table, we  can notice that TSARM is always faster  than FGMRES. The last
-column shows the ratio between FGMRES and the best version of TSARM according to
-the minimization procedure: CGLS or LSQR.
-
-
-\begin{figure}
+problems)  per processor  is fixed  to 25,000,  also called  weak  scaling. This
+number can seem relatively small. In fact, for some applications that need a lot
+of  memory, the  number of  components per  processor requires  sometimes  to be
+small.
+
+
+
+In this Table, we  can notice that TSIRM is always faster  than FGMRES. The last
+column shows the ratio between FGMRES and the best version of TSIRM according to
+the minimization  procedure: CGLS or  LSQR. Even if  we have computed  the worst
+case  between CGLS  and LSQR,  it is  clear that  TSIRM is  alsways  faster than
+FGMRES. For this example, the  multigrid preconditionner is faster than SOR. The
+gain  between   TSIRM  and  FGMRES  is   more  or  less  similar   for  the  two
+preconditioners.  Looking at the number  of iterations to reach the convergence,
+it is  obvious that TSIRM allows the  reduction of the number  of iterations. It
+should be noticed  that for TSIRM, in those experiments,  only the iterations of
+the Krylov solver  are taken into account.  Iterations of CGLS  or LSQR were not
+recorded but they are time-consuming. In general each $max\_iter_{kryl}*s$ which
+corresponds to 30*12, there are $max\_iter_{ls}$ which corresponds to 15.
+
+\begin{figure}[htbp]
 \centering
   \includegraphics[width=0.45\textwidth]{nb_iter_sec_ex15_juqueen}
 \centering
   \includegraphics[width=0.45\textwidth]{nb_iter_sec_ex15_juqueen}
-\caption{Number of iterations per second with ex15 and the same parameters than in Table~\ref{tab:03}}
+\caption{Number of iterations per second with ex15 and the same parameters than in Table~\ref{tab:03} (weak scaling)}
 \label{fig:01}
 \end{figure}
 
 
 \label{fig:01}
 \end{figure}
 
 
+In  Figure~\ref{fig:01}, the number  of iterations  per second  corresponding to
+Table~\ref{tab:01}  is  displayed.   It  can  be  noticed  that  the  number  of
+iterations per second of FMGRES is  constant whereas it decrease with TSIRM with
+both preconditioner. This  can be explained by the fact that  when the number of
+core increases the time for the minimization step also increases but, generally,
+when  the number  of cores  increases,  the number  of iterations  to reach  the
+threshold also increases,  and, in that case, TSIRM is  more efficient to reduce
+the number of iterations. So, the overall benefit of using TSIRM is interesting.
+
 
 
 
 
 
 
-\begin{table*}
+
+
+\begin{table*}[htbp]
 \begin{center}
 \begin{tabular}{|r|r|r|r|r|r|r|r|r|} 
 \hline
 
 \begin{center}
 \begin{tabular}{|r|r|r|r|r|r|r|r|r|} 
 \hline
 
-  nb. cores & threshold   & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} &  \multicolumn{2}{c|}{TSARM LSQR} & best gain \\ 
+  nb. cores & threshold   & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSIRM CGLS} &  \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\ 
 \cline{3-8}
              &                       & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. & \\\hline \hline
   2,048      & 8e-5                  & 108.88 & 16,560  & 23.06  &  3,630  & 22.79  & 3,630   & 4.77 \\
 \cline{3-8}
              &                       & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. & \\\hline \hline
   2,048      & 8e-5                  & 108.88 & 16,560  & 23.06  &  3,630  & 22.79  & 3,630   & 4.77 \\
@@ -921,15 +943,15 @@ the minimization procedure: CGLS or LSQR.
 \end{table*}
 
 
 \end{table*}
 
 
+In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architecture are reported.
 
 
 
 
-
-\begin{table*}
+\begin{table*}[htbp]
 \begin{center}
 \begin{tabular}{|r|r|r|r|r|r|r|r|r|r|r|} 
 \hline
 
 \begin{center}
 \begin{tabular}{|r|r|r|r|r|r|r|r|r|r|r|} 
 \hline
 
-  nb. cores   & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} &  \multicolumn{2}{c|}{TSARM LSQR} & best gain & \multicolumn{3}{c|}{efficiency} \\ 
+  nb. cores   & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSIRM CGLS} &  \multicolumn{2}{c|}{TSIRM LSQR} & best gain & \multicolumn{3}{c|}{efficiency} \\ 
 \cline{2-7} \cline{9-11}
                     & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. &   & GMRES & TS CGLS & TS LSQR\\\hline \hline
    512              & 3,969.69 & 33,120 & 709.57 & 5,790  & 622.76 & 5,070  & 6.37  &   1    &    1    &     1     \\
 \cline{2-7} \cline{9-11}
                     & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. &   & GMRES & TS CGLS & TS LSQR\\\hline \hline
    512              & 3,969.69 & 33,120 & 709.57 & 5,790  & 622.76 & 5,070  & 6.37  &   1    &    1    &     1     \\
@@ -946,6 +968,13 @@ the minimization procedure: CGLS or LSQR.
 \end{center}
 \end{table*}
 
 \end{center}
 \end{table*}
 
+\begin{figure}[htbp]
+\centering
+  \includegraphics[width=0.45\textwidth]{nb_iter_sec_ex54_curie}
+\caption{Number of iterations per second with ex54 and the same parameters than in Table~\ref{tab:05} (strong scaling)}
+\label{fig:02}
+\end{figure}
+
 %%%*********************************************************
 %%%*********************************************************
 
 %%%*********************************************************
 %%%*********************************************************