+called for a maximum of $max\_iter_{kryl}$ iterations. In practice, we suggest to set this parameter
+equals to the restart number of the GMRES-like method. Moreover, a tolerance
+threshold must be specified for the solver. In practice, this threshold must be
+much smaller than the convergence threshold of the TSARM algorithm (i.e.
+$\epsilon_{tsarm}$). Line~\ref{algo:store}, $S_{k~ mod~ s}=x^k$ consists in copying the
+solution $x_k$ into the column $k~ mod~ s$ of the matrix $S$. After the
+minimization, the matrix $S$ is reused with the new values of the residuals. To
+solve the minimization problem, an iterative method is used. Two parameters are
+required for that: the maximum number of iteration and the threshold to stop the
+method.
+
+To summarize, the important parameters of TSARM are:
+\begin{itemize}
+\item $\epsilon_{tsarm}$ the threshold to stop the TSARM method
+\item $max\_iter_{kryl}$ the maximum number of iterations for the krylov method
+\item $s$ the number of outer iterations before applying the minimization step
+\item $max\_iter_{ls}$ the maximum number of iterations for the iterative least-square method
+\item $\epsilon_{ls}$ the threshold to stop the least-square method
+\end{itemize}
+
+
+The parallelisation of TSARM relies on the parallelization of all its
+parts. More precisely, except the least-square step, all the other parts are
+obvious to achieve out in parallel. In order to develop a parallel version of
+our code, we have chosen to use PETSc~\cite{petsc-web-page}. For
+line~\ref{algo:matrix_mul} the matrix-matrix multiplication is implemented and
+efficient since the matrix $A$ is sparse and since the matrix $S$ contains few
+colums in practice. As explained previously, at least two methods seem to be
+interesting to solve the least-square minimization, CGLS and LSQR.
+
+In the following we remind the CGLS algorithm. The LSQR method follows more or
+less the same principle but it take more place, so we briefly explain the parallelization of CGLS which is similar to LSQR.
+
+\begin{algorithm}[t]
+\caption{CGLS}
+\begin{algorithmic}[1]
+ \Input $A$ (matrix), $b$ (right-hand side)
+ \Output $x$ (solution vector)\vspace{0.2cm}
+ \State $r=b-Ax$
+ \State $p=A'r$
+ \State $s=p$
+ \State $g=||s||^2_2$
+ \For {$k=1,2,3,\ldots$ until convergence (g$<\epsilon_{ls}$)} \label{algo2:conv}
+ \State $q=Ap$
+ \State $\alpha=g/||q||^2_2$
+ \State $x=x+alpha*p$
+ \State $r=r-alpha*q$
+ \State $s=A'*r$
+ \State $g_{old}=g$
+ \State $g=||s||^2_2$
+ \State $\beta=g/g_{old}$
+ \EndFor
+\end{algorithmic}
+\label{algo:02}
+\end{algorithm}
+
+
+In each iteration of CGLS, there is two matrix-vector multiplications and some
+classical operations: dots, norm, multiplication and addition on vectors. All
+these operations are easy to implement in PETSc or similar environment.
+
+