\algnewcommand\Output{\item[\algorithmicoutput]}
\newtheorem{proposition}{Proposition}
-\newtheorem{proof}{Proof}
\begin{document}
%
% use a multiple column layout for up to two different
% affiliations
-\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}}
+\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja \IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}}
\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\
Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr}
\IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\
\begin{equation}
||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0|| ,
\end{equation}
-where $\alpha = \lambda_{min}(M)^2$ and $\beta = \lambda_{max}(A^T A)$, which proves
+where $\alpha = \lambda_min(M)^2$ and $\beta = \lambda_max(A^T A)$, which proves
the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$.
\end{proposition}
+<<<<<<< HEAD
+
+=======
We can now claim that,
\begin{proposition}
-If $A$ is a positive real matrix, then the TSIRM algorithm is convergent.
+If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent.
\end{proposition}
\begin{proof}
$k$-th iterate of TSIRM.
We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$.
-
+Each step of the TSIRM algorithm
\end{proof}
+>>>>>>> 84e15020344b77e5497c4a516cc20b472b2914cd
%%%*********************************************************
%%%*********************************************************
In Figure~\ref{fig:01}, the number of iterations per second corresponding to
Table~\ref{tab:01} is displayed. It can be noticed that the number of
-iterations per second of FMGRES is constant whereas it decrease with TSIRM with
-both preconditioner. This can be explained by the fact that when the number of
-core increases the time for the minimization step also increases but, generally,
+iterations per second of FMGRES is constant whereas it decreases with TSIRM with
+both preconditioners. This can be explained by the fact that when the number of
+cores increases the time for the least-squares minimization step also increases but, generally,
when the number of cores increases, the number of iterations to reach the
threshold also increases, and, in that case, TSIRM is more efficient to reduce
the number of iterations. So, the overall benefit of using TSIRM is interesting.
% that's all folks
\end{document}
+
+