]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
update
[GMRES2stage.git] / paper.tex
index d114bdd53ae94f8c783ed289ed9747e70f167d62..126ff346a33bb29210daf7956459837b991149f6 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 % affiliations
 
 \author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}}
-\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\
+\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche-Comt\'e, France\\
 Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr}
 \IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\
 Email: lilia.ziane@inria.fr}
@@ -439,7 +439,7 @@ GMRES.
 \end{abstract}
 
 \begin{IEEEkeywords}
-Iterative Krylov methods; sparse linear systems; residual minimization; PETSc; %à voir... 
+Iterative Krylov methods; sparse linear systems; two stage iteration; least-squares residual minimization; PETSc
 \end{IEEEkeywords}
 
 
@@ -547,38 +547,42 @@ Iterative Krylov methods; sparse linear systems; residual minimization; PETSc; %
 % You must have at least 2 lines in the paragraph with the drop letter
 % (should never be an issue)
 
-Iterative methods have recently become more attractive than  direct ones to  solve very large
-sparse  linear systems.  They are more  efficient  in a  parallel
-context,  supporting  thousands  of  cores,  and they require  less  memory  and  arithmetic
-operations than direct  methods. This is why new iterative  methods are frequently 
-proposed or adapted by researchers, and the increasing need to solve very large sparse
-linear  systems  has triggered the  development  of such efficient iterative  techniques
-suitable for parallel processing.
-
-Most of the successful iterative methods currently available are based on so-called ``Krylov
-subspaces''. They  consist in forming a  basis of successive matrix
-powers multiplied by an initial vector, which can be for instance the residual. These methods use vectors orthogonality of the Krylov  subspace  basis in order to solve  linear
-systems.  The  most known iterative  Krylov subspace methods  are conjugate
-gradient and GMRES ones (Generalized Minimal RESidual).
-
-
-However,  iterative  methods suffer  from scalability  problems  on parallel
-computing  platforms  with many  processors, due  to  their need  of  reduction
-operations, and to  collective    communications   to  achive   matrix-vector
+Iterative methods have recently become more attractive than direct ones to solve
+very large sparse  linear systems\cite{Saad2003}.  They are more  efficient in a
+parallel context,  supporting thousands of  cores, and they require  less memory
+and  arithmetic operations than  direct methods~\cite{bahicontascoutu}.  This is
+why new iterative methods are frequently proposed or adapted by researchers, and
+the increasing need to solve very  large sparse linear systems has triggered the
+development  of  such  efficient  iterative  techniques  suitable  for  parallel
+processing.
+
+Most  of the  successful  iterative  methods currently  available  are based  on
+so-called ``Krylov  subspaces''. They consist  in forming a basis  of successive
+matrix powers  multiplied by an  initial vector, which  can be for  instance the
+residual. These methods  use vectors orthogonality of the  Krylov subspace basis
+in  order to solve  linear systems.   The most  known iterative  Krylov subspace
+methods are conjugate gradient and GMRES ones (Generalized Minimal RESidual).
+
+
+However,  iterative  methods  suffer   from  scalability  problems  on  parallel
+computing  platforms  with many  processors,  due  to  their need  of  reduction
+operations,   and  to   collective  communications   to   achieve  matrix-vector
 multiplications. The  communications on large  clusters with thousands  of cores
-and  large  sizes of  messages  can  significantly  affect the  performances  of these
-iterative methods. As a consequence, Krylov subspace iteration methods are often used
-with preconditioners in practice, to increase their convergence and accelerate their
-performances.  However, most  of the  good preconditioners  are not  scalable on
-large clusters.
-
-In this research work, a two-stage algorithm based on  two nested iterations
-called inner-outer  iterations is proposed.  This algorithm  consists in solving  the sparse
-linear system iteratively  with a small number of  inner iterations, and restarting
-the outer  step with a  new solution minimizing  some error functions  over some
-previous residuals. This algorithm is iterative and easy to parallelize on large
-clusters. Furthermore,  the   minimization  technique   improves  its   convergence  and
-performances.
+and large sizes  of messages can significantly affect  the performances of these
+iterative methods. As a consequence, Krylov subspace iteration methods are often
+used  with  preconditioners  in  practice,  to increase  their  convergence  and
+accelerate their  performances.  However, most  of the good  preconditioners are
+not scalable on large clusters.
+
+In  this research work,  a two-stage  algorithm based  on two  nested iterations
+called inner-outer  iterations is proposed.  This algorithm  consists in solving
+the sparse  linear system iteratively with  a small number  of inner iterations,
+and  restarting  the  outer step  with  a  new  solution minimizing  some  error
+functions  over some previous  residuals. For  further information  on two-stage
+iteration      methods,     interested      readers      are     invited      to
+consult~\cite{Nichols:1973:CTS}. Two-stage algorithms are easy to parallelize on
+large clusters.  Furthermore,  the least-squares minimization technique improves
+its convergence and performances.
 
 The present  article is  organized as follows.   Related works are  presented in
 Section~\ref{sec:02}. Section~\ref{sec:03} details the two-stage algorithm using
@@ -618,22 +622,23 @@ It can be summarized as follows: the
 inner solver is a Krylov based one. In order to accelerate its convergence, the 
 outer solver periodically applies a least-squares minimization  on the residuals computed by  the inner one. %Tsolver which does not required to be changed.
 
-At each outer iteration, the sparse linear system $Ax=b$ is partially 
-solved using only $m$
-iterations of an iterative method, this latter being initialized with the 
-best known approximation previously obtained. 
-GMRES method~\cite{Saad86}, or any of its variants, can be used for instance as an
-inner solver. The current approximation of the Krylov method is then stored inside a matrix
-$S$ composed by the successive solutions that are computed during inner iterations.
+At each  outer iteration,  the sparse linear  system $Ax=b$ is  partially solved
+using only $m$ iterations of  an iterative method, this latter being initialized
+with the last obtained approximation.  GMRES method~\cite{Saad86}, or any of its
+variants, can potentially be used  as inner solver. The current approximation of
+the Krylov  method is then  stored inside  a $n \times  s$ matrix $S$,  which is
+composed by  the $s$  last solutions  that have been  computed during  the inner
+iterations phase.   In the remainder,  the $i$-th column  vector of $S$  will be
+denoted by $S_i$.
 
-At each $s$ iterations, the minimization step is applied in order to
+At each $s$ iterations, another kind of minimization step is applied in order to
 compute a new  solution $x$. For that, the previous  residuals of $Ax=b$ are computed by
 the inner iterations with $(b-AS)$. The minimization of the residuals is obtained by  
 \begin{equation}
    \underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2
 \label{eq:01}
 \end{equation}
-with $R=AS$. Then the new solution $x$ is computed with $x=S\alpha$.
+with $R=AS$. The new solution $x$ is then computed with $x=S\alpha$.
 
 
 In  practice, $R$  is a  dense rectangular  matrix belonging in  $\mathbb{R}^{n\times s}$,
@@ -650,9 +655,8 @@ appropriate than a single direct method in a parallel context.
   \Output $x$ (solution vector)\vspace{0.2cm}
   \State Set the initial guess $x_0$
   \For {$k=1,2,3,\ldots$ until convergence (error$<\epsilon_{tsirm}$)} \label{algo:conv}
-    \State  $x_k=Solve(A,b,x_{k-1},max\_iter_{kryl})$   \label{algo:solve}
-    \State retrieve error
-    \State $S_{k \mod s}=x_k$ \label{algo:store}
+    \State  $[x_k,error]=Solve(A,b,x_{k-1},max\_iter_{kryl})$   \label{algo:solve}
+    \State $S_{k \mod s}=x_k$ \label{algo:store} \Comment{update column (k mod s) of S}
     \If {$k \mod s=0$ {\bf and} error$>\epsilon_{kryl}$}
       \State $R=AS$ \Comment{compute dense matrix} \label{algo:matrix_mul}
             \State $\alpha=Least\_Squares(R,b,max\_iter_{ls})$ \label{algo:}
@@ -663,18 +667,22 @@ appropriate than a single direct method in a parallel context.
 \label{algo:01}
 \end{algorithm}
 
-Algorithm~\ref{algo:01}  summarizes  the principle  of  our  method.  The  outer
-iteration is  inside the for  loop. Line~\ref{algo:solve}, the Krylov  method is
-called for a  maximum of $max\_iter_{kryl}$ iterations.  In practice, we  suggest to set this parameter
-equals to  the restart  number of the  GMRES-like method. Moreover,  a tolerance
-threshold must be specified for the  solver. In practice, this threshold must be
-much  smaller  than the  convergence  threshold  of  the TSIRM  algorithm  (\emph{i.e.}
-$\epsilon_{tsirm}$).  Line~\ref{algo:store}, $S_{k \mod s}=x^k$ consists in copying the
-solution  $x_k$  into the  column  $k \mod s$ of  the  matrix  $S$, where $S$ is a matrix of size $n\times s$ whose column vector $i$ is denoted by $S_i$. After  the
-minimization, the matrix $S$ is reused with the new values of the residuals.  To
-solve the minimization problem, an  iterative method is used. Two parameters are
-required for that: the maximum number of iterations and the threshold to stop the
-method.
+Algorithm~\ref{algo:01} summarizes  the principle  of the proposed  method.  The
+outer iteration is inside the \emph{for} loop. Line~\ref{algo:solve}, the Krylov
+method is called  for a maximum of $max\_iter_{kryl}$  iterations.  In practice,
+we suggest to  set this parameter equal to the restart  number in the GMRES-like
+method. Moreover,  a tolerance  threshold must be  specified for the  solver. In
+practice, this threshold must be  much smaller than the convergence threshold of
+the  TSIRM algorithm  (\emph{i.e.}, $\epsilon_{tsirm}$).  We also  consider that
+after the call of the $Solve$ function, we obtain the vector $x_k$ and the error
+which is defined by $||Ax^k-b||_2$.
+
+  Line~\ref{algo:store},
+$S_{k \mod  s}=x^k$ consists in  copying the solution  $x_k$ into the  column $k
+\mod s$ of $S$.   After the minimization, the matrix $S$ is  reused with the new
+values of the residuals.  To solve the minimization problem, an iterative method
+is used. Two parameters are required  for that: the maximum number of iterations
+and the threshold to stop the method.
 
 Let us summarize the most important parameters of TSIRM:
 \begin{itemize}
@@ -735,7 +743,7 @@ these operations are easy to implement in PETSc or similar environment.
 
 \section{Convergence results}
 \label{sec:04}
-Let us recall the following result, see~\cite{Saad86}.
+Let us recall the following result, see~\cite{Saad86} for further readings.
 \begin{proposition}
 \label{prop:saad}
 Suppose that $A$ is a positive real matrix with symmetric part $M$. Then the residual norm provided at the $m$-th step of GMRES satisfies:
@@ -796,10 +804,12 @@ than the one of the GMRES method.
 
 
 In order to see the influence of our algorithm with only one processor, we first
-show  a comparison  with the  standard version  of GMRES  and our  algorithm. In
-Table~\ref{tab:01},  we  show  the  matrices  we  have used  and  some  of  them
-characteristics. For all  the matrices, the name, the field,  the number of rows
-and the number of nonzero elements are given.
+show a comparison with GMRES or FGMRES and our algorithm. In Table~\ref{tab:01},
+we  show the  matrices we  have  used and  some of  them characteristics.  Those
+matrices  are   chosen  from   the  Davis  collection   of  the   University  of
+Florida~\cite{Dav97}. They are matrices arising in real-world applications.  For
+all the  matrices, the name,  the field,  the number of  rows and the  number of
+nonzero elements are given.
 
 \begin{table}[htbp]
 \begin{center}
@@ -832,13 +842,14 @@ Core(TM) i7-3630QM CPU @ 2.40GHz with the version 3.5.1 of PETSc.
 In  Table~\ref{tab:02}, some  experiments comparing  the solving  of  the linear
 systems obtained with the previous matrices  with a GMRES variant and with out 2
 stage algorithm are  given. In the second column, it can  be noticed that either
-gmres or fgmres is used to  solve the linear system.  According to the matrices,
-different  preconditioner is used.   With TSIRM,  the same  solver and  the same
-preconditionner are used.  This Table shows that TSIRM can drastically reduce the
-number of iterations to reach the  convergence when the number of iterations for
-the normal GMRES is more or less  greater than 500. In fact this also depends on
-tow  parameters: the  number  of iterations  to  stop GMRES  and  the number  of
-iterations to perform the minimization.
+GRMES or  FGMRES (Flexible  GMRES)~\cite{Saad:1993} is used  to solve  the linear
+system.   According to  the matrices,  different preconditioner  is  used.  With
+TSIRM, the same solver and the  same preconditionner are used.  This Table shows
+that  TSIRM  can  drastically reduce  the  number  of  iterations to  reach  the
+convergence when the  number of iterations for the normal GMRES  is more or less
+greater than  500. In fact  this also depends  on tow parameters: the  number of
+iterations  to  stop  GMRES  and   the  number  of  iterations  to  perform  the
+minimization.
 
 
 \begin{table}[htbp]
@@ -868,7 +879,7 @@ torso3             & fgmres / sor  & 37.70 & 565 & 34.97 & 510 \\
 
 
 
-In order to perform larger  experiments, we have tested some example applications
+In order to perform larger experiments, we have tested some example applications
 of PETSc. Those  applications are available in the ksp part  which is suited for
 scalable linear equations solvers:
 \begin{itemize}
@@ -881,11 +892,23 @@ scalable linear equations solvers:
   finite elements. For this example, the user can define the scaling of material
   coefficient in embedded circle called $\alpha$.
 \end{itemize}
-For more technical details on  these applications, interested readers are invited
-to  read the  codes available  in the  PETSc sources.   Those problems  have been
-chosen because they  are scalable with many cores which is not the case of other problems that we have tested.
+For more technical details on these applications, interested readers are invited
+to read  the codes  available in  the PETSc sources.   Those problems  have been
+chosen because they are scalable with many  cores which is not the case of other
+problems that we have tested.
+
+In  the  following   larger  experiments  are  described  on   two  large  scale
+architectures:  Curie and  Juqeen.  Both  these architectures  are supercomputer
+composed of 80,640 cores for Curie and 458,752 cores for Juqueen. Those machines
+are respectively hosted  by GENCI in France and  Jülich Supercomputing Centre in
+Germany. They belongs with other similar architectures of the PRACE initiative (
+Partnership  for Advanced  Computing in  Europe)  which aims  at proposing  high
+performance supercomputing architecture to enhance research in Europe. The Curie
+architecture is composed of Intel E5-2680  processors at 2.7 GHz with 2Gb memory
+by core. The Juqueen architecture is composed  of IBM PowerPC A2 at 1.6 GHz with
+1Gb memory per  core. Both those architecture are equiped  with a dedicated high
+speed network.
 
-In the following larger experiments are described on two large scale architectures: Curie and Juqeen... {\bf description...}\\
 
 
 {\bf Description of preconditioners}\\
@@ -1029,13 +1052,22 @@ In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architect
 %%%*********************************************************
 %%%*********************************************************
 
-
-future plan : \\
-- study other kinds of matrices, problems, inner solvers\\
-- test the influence of all parameters\\
-- adaptative number of outer iterations to minimize\\
-- other methods to minimize the residuals?\\
-- implement our solver inside PETSc
+A novel two-stage iterative  algorithm has been proposed in this article,
+in order to accelerate the convergence Krylov iterative  methods.
+Our TSIRM proposal acts as a merger between Krylov based solvers and
+a least-squares minimization step.
+The convergence of the method has been proven in some situations, while 
+experiments up to 16,394 cores have been led to verify that TSIRM runs
+5 or  7 times  faster than GMRES.
+
+
+For future work, the authors' intention is to investigate 
+other kinds of matrices, problems, and inner solvers. The 
+influence of all parameters must be tested too, while 
+other methods to minimize the residuals must be regarded.
+The number of outer iterations to minimize should become 
+adaptative to improve the overall performances of the proposal.
+Finally, this solver will be implemented inside PETSc.
 
 
 % conference papers do not normally have an appendix