]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
première version de la conclusion
[GMRES2stage.git] / paper.tex
index d114bdd53ae94f8c783ed289ed9747e70f167d62..6a83f5221e0d087a74df1fc7b2502da6cbc1f965 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 % affiliations
 
 \author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}}
-\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\
+\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche-Comt\'e, France\\
 Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr}
 \IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\
 Email: lilia.ziane@inria.fr}
@@ -564,7 +564,7 @@ gradient and GMRES ones (Generalized Minimal RESidual).
 
 However,  iterative  methods suffer  from scalability  problems  on parallel
 computing  platforms  with many  processors, due  to  their need  of  reduction
-operations, and to  collective    communications   to  achive   matrix-vector
+operations, and to  collective    communications   to  achieve   matrix-vector
 multiplications. The  communications on large  clusters with thousands  of cores
 and  large  sizes of  messages  can  significantly  affect the  performances  of these
 iterative methods. As a consequence, Krylov subspace iteration methods are often used
@@ -1029,13 +1029,22 @@ In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architect
 %%%*********************************************************
 %%%*********************************************************
 
-
-future plan : \\
-- study other kinds of matrices, problems, inner solvers\\
-- test the influence of all parameters\\
-- adaptative number of outer iterations to minimize\\
-- other methods to minimize the residuals?\\
-- implement our solver inside PETSc
+A novel two-stage iterative  algorithm has been proposed in this article,
+in order to accelerate the convergence Krylov iterative  methods.
+Our TSIRM proposal acts as a merger between Krylov based solvers and
+a least-squares minimization step.
+The convergence of the method has been proven in some situations, while 
+experiments up to 16,394 cores have been led to verify that TSIRM runs
+5 or  7 times  faster than GMRES.
+
+
+For future work, the authors' intention is to investigate 
+other kinds of matrices, problems, and inner solvers. The 
+influence of all parameters must be tested too, while 
+other methods to minimize the residuals must be regarded.
+The number of outer iterations to minimize should become 
+adaptative to improve the overall performances of the proposal.
+Finally, this solver will be implemented inside PETSc.
 
 
 % conference papers do not normally have an appendix