% paper title
% can use linebreaks \\ within to get better formatting as desired
\title{TSIRM: A Two-Stage Iteration with least-square Residual Minimization algorithm to solve large sparse linear systems}
-%où
-%\title{A two-stage algorithm with error minimization to solve large sparse linear systems}
-%où
-%\title{???}
+
%%%*********************************************************
%%%*********************************************************
-\section{Two-stage algorithm with least-square residuals minimization}
+\section{Two-stage iteration with least-square residuals minimization algorithm}
\label{sec:03}
A two-stage algorithm is proposed to solve large sparse linear systems of the
form $Ax=b$, where $A\in\mathbb{R}^{n\times n}$ is a sparse and square
In practice, $R$ is a dense rectangular matrix belonging in $\mathbb{R}^{n\times s}$,
-with $s\ll n$. In order to minimize~(\eqref{eq:01}), a least-square method such as
+with $s\ll n$. In order to minimize~\eqref{eq:01}, a least-square method such as
CGLS ~\cite{Hestenes52} or LSQR~\cite{Paige82} is used. Remark that these methods are more
appropriate than a single direct method in a parallel context.
solution $x_k$ into the column $k~ mod~ s$ of the matrix $S$. After the
minimization, the matrix $S$ is reused with the new values of the residuals. To
solve the minimization problem, an iterative method is used. Two parameters are
-required for that: the maximum number of iteration and the threshold to stop the
+required for that: the maximum number of iterations and the threshold to stop the
method.
Let us summarize the most important parameters of TSIRM:
interesting to solve the least-square minimization, CGLS and LSQR.
In the following we remind the CGLS algorithm. The LSQR method follows more or
-less the same principle but it take more place, so we briefly explain the parallelization of CGLS which is similar to LSQR.
+less the same principle but it takes more place, so we briefly explain the parallelization of CGLS which is similar to LSQR.
\begin{algorithm}[t]
\caption{CGLS}
In each iteration of CGLS, there is two matrix-vector multiplications and some
-classical operations: dots, norm, multiplication and addition on vectors. All
+classical operations: dot product, norm, multiplication and addition on vectors. All
these operations are easy to implement in PETSc or similar environment.
show a comparison with the standard version of GMRES and our algorithm. In
Table~\ref{tab:01}, we show the matrices we have used and some of them
characteristics. For all the matrices, the name, the field, the number of rows
-and the number of nonzero elements is given.
+and the number of nonzero elements are given.
\begin{table}[htbp]
\begin{center}
The following parameters have been chosen for our experiments. As by default
the restart of GMRES is performed every 30 iterations, we have chosen to stop
-the GMRES every 30 iterations, $max\_iter_{kryl}=30$). $s$ is set to 8. CGLS is
+the GMRES every 30 iterations (\emph{i.e.} $max\_iter_{kryl}=30$). $s$ is set to 8. CGLS is
chosen to minimize the least-squares problem with the following parameters:
$\epsilon_{ls}=1e-40$ and $max\_iter_{ls}=20$. The external precision is set to
$\epsilon_{tsirm}=1e-10$. Those experiments have been performed on a Intel(R)