+In order to perform larger experiments, we have tested some example application
+of PETSc. Those applications are available in the ksp part which is suited for
+scalable linear equations solvers:
+\begin{itemize}
+\item ex15 is an example which solves in parallel an operator using a finite
+ difference scheme. The diagonal is equals to 4 and 4 extra-diagonals
+ representing the neighbors in each directions is equal to -1. This example is
+ used in many physical phenomena, for example, heat and fluid flow, wave
+ propagation...
+\item ex54 is another example based on 2D problem discretized with quadrilateral
+ finite elements. For this example, the user can define the scaling of material
+ coefficient in embedded circle, it is called $\alpha$.
+\end{itemize}
+For more technical details on these applications, interested reader are invited
+to read the codes available in the PETSc sources. Those problem have been
+chosen because they are scalable with many cores. We have tested other problem
+but they are not scalable with many cores.
+
+In the following larger experiments are described on two large scale architectures: Curie and Juqeen... {\bf description...}\\
+
+
+{\bf Description of preconditioners}
+
+\begin{table*}
+\begin{center}
+\begin{tabular}{|r|r|r|r|r|r|r|r|r|}
+\hline
+
+ nb. cores & precond & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSARM CGLS} & \multicolumn{2}{c|}{TSARM LSQR} & best gain \\
+\cline{3-8}
+ & & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline
+ 2,048 & mg & 403.49 & 18,210 & 73.89 & 3,060 & 77.84 & 3,270 & 5.46 \\
+ 2,048 & sor & 745.37 & 57,060 & 87.31 & 6,150 & 104.21 & 7,230 & 8.53 \\
+ 4,096 & mg & 562.25 & 25,170 & 97.23 & 3,990 & 89.71 & 3,630 & 6.27 \\
+ 4,096 & sor & 912.12 & 70,194 & 145.57 & 9,750 & 168.97 & 10,980 & 6.26 \\
+ 8,192 & mg & 917.02 & 40,290 & 148.81 & 5,730 & 143.03 & 5,280 & 6.41 \\
+ 8,192 & sor & 1,404.53 & 106,530 & 212.55 & 12,990 & 180.97 & 10,470 & 7.76 \\
+ 16,384 & mg & 1,430.56 & 63,930 & 237.17 & 8,310 & 244.26 & 7,950 & 6.03 \\
+ 16,384 & sor & 2,852.14 & 216,240 & 418.46 & 21,690 & 505.26 & 23,970 & 6.82 \\
+\hline
+
+\end{tabular}
+\caption{Comparison of FGMRES and TSARM with FGMRES for example ex15 of PETSc with two preconditioner (mg and sor) with 25,000 components per core on Juqueen (threshold 1e-3, restart=30, s=12), time is expressed in seconds.}
+\label{tab:03}
+\end{center}
+\end{table*}
+
+Table~\ref{tab:03} shows the execution times and the number of iterations of
+example ex15 of PETSc on the Juqueen architecture. Differents number of cores
+are studied rangin from 2,048 upto 16,383. Two preconditioners have been
+tested. For those experiments, the number of components (or unknown of the
+problems) per processor is fixed to 25,000. This number can seem relatively
+small. In fact, for some applications that need a lot of memory, the number of
+components per processor requires sometimes to be small.
+
+In this Table, we can notice that TSARM is always faster than FGMRES. The last
+column shows the ratio between FGMRES and the best version of TSARM according to
+the minimization procedure: CGLS or LSQR.
+
+
+\begin{figure}
+\centering
+ \includegraphics[width=0.45\textwidth]{nb_iter_sec_ex15_juqueen}
+\caption{Number of iterations per second with ex15 and the same parameters than in Table~\ref{tab:03}}
+\label{fig:01}
+\end{figure}
+