%%%*********************************************************
\section{Related works}
\label{sec:02}
-%Wherever Times is specified, Times Roman or Times New Roman may be used. If neither is available on your system, please use the font closest in appearance to Times. Avoid using bit-mapped fonts if possible. True-Type 1 or Open Type fonts are preferred. Please embed symbol fonts, as well, for math, etc.
+%GMRES method is one of the most widely used iterative solvers chosen to deal with the sparsity and the large order of linear systems. It was initially developed by Saad \& al.~\cite{Saad86} to deal with non-symmetric and non-Hermitian problems, and indefinite symmetric problems too. The convergence of the restarted GMRES with preconditioning is faster and more stable than those of some other iterative solvers.
+
+%The next two chapters explore a few methods which are considered currently to be among the most important iterative techniques available for solving large linear systems. These techniques are based on projection processes, both orthogonal and oblique, onto Krylov subspaces, which are subspaces spanned by vectors of the form p(A)v where p is a polynomial. In short, these techniques approximate A −1 b by p(A)b, where p is a “good” polynomial. This chapter covers methods derived from, or related to, the Arnoldi orthogonalization. The next chapter covers methods based on Lanczos biorthogonalization.
+
+%Krylov subspace techniques have inceasingly been viewed as general purpose iterative methods, especially since the popularization of the preconditioning techniqes.
+
+%Preconditioned Krylov-subspace iterations are a key ingredient in many modern linear solvers, including in solvers that employ support preconditioners.
%%%*********************************************************
%%%*********************************************************
\Input $A$ (sparse matrix), $b$ (right-hand side)
\Output $x$ (solution vector)\vspace{0.2cm}
\State Set the initial guess $x_0$
- \For {$k=1,2,3,\ldots$ until convergence (error$<\epsilon_{tsirm}$)} \label{algo:conv}
+ \For {$k=1,2,3,\ldots$ until convergence ($error<\epsilon_{tsirm}$)} \label{algo:conv}
\State $[x_k,error]=Solve(A,b,x_{k-1},max\_iter_{kryl})$ \label{algo:solve}
- \State $S_{k \mod s}=x_k$ \label{algo:store} \Comment{update column (k mod s) of S}
- \If {$k \mod s=0$ {\bf and} error$>\epsilon_{kryl}$}
+ \State $S_{k \mod s}=x_k$ \label{algo:store} \Comment{update column ($k \mod s$) of $S$}
+ \If {$k \mod s=0$ {\bf and} $error>\epsilon_{kryl}$}
\State $R=AS$ \Comment{compute dense matrix} \label{algo:matrix_mul}
\State $\alpha=Least\_Squares(R,b,max\_iter_{ls})$ \label{algo:}
\State $x_k=S\alpha$ \Comment{compute new solution}
practice, this threshold must be much smaller than the convergence threshold of
the TSIRM algorithm (\emph{i.e.}, $\epsilon_{tsirm}$). We also consider that
after the call of the $Solve$ function, we obtain the vector $x_k$ and the error
-which is defined by $||Ax^k-b||_2$.
+which is defined by $||Ax_k-b||_2$.
Line~\ref{algo:store},
-$S_{k \mod s}=x^k$ consists in copying the solution $x_k$ into the column $k
+$S_{k \mod s}=x_k$ consists in copying the solution $x_k$ into the column $k
\mod s$ of $S$. After the minimization, the matrix $S$ is reused with the new
values of the residuals. To solve the minimization problem, an iterative method
is used. Two parameters are required for that: the maximum number of iterations
\label{fig:02}
\end{figure}
+
+Concerning the experiments some other remarks are interesting.
+\begin{itemize}
+\item We can tested other examples of PETSc (ex29, ex45, ex49). For all these
+ examples, we also obtained similar gain between GMRES and TSIRM but those
+ examples are not scalable with many cores. In general, we had some problems
+ with more than $4,096$ cores.
+\item We have tested many iterative solvers available in PETSc. In fast, it is
+ possible to use most of them with TSIRM. From our point of view, the condition
+ to use a solver inside TSIRM is that the solver must have a restart
+ feature. More precisely, the solver must support to be stoped and restarted
+ without decrease its converge. That is why with GMRES we stop it when it is
+ naturraly restarted (i.e. with $m$ the restart parameter). The Conjugate
+ Gradient (CG) and all its variants do not have ``restarted'' version in PETSc,
+ so they are not efficient. They will converge with TSIRM but not quickly
+ because if we compare a normal CG with a CG for which we stop it each 16
+ iterations for example, the normal CG will be for more efficient. Some
+ restarted CG or CG variant versions exist and may be interested to study in
+ future works.
+\end{itemize}
%%%*********************************************************
%%%*********************************************************
5 or 7 times faster than GMRES.
-For future work, the authors' intention is to investigate
-other kinds of matrices, problems, and inner solvers. The
-influence of all parameters must be tested too, while
-other methods to minimize the residuals must be regarded.
-The number of outer iterations to minimize should become
-adaptative to improve the overall performances of the proposal.
-Finally, this solver will be implemented inside PETSc.
+For future work, the authors' intention is to investigate other kinds of
+matrices, problems, and inner solvers. The influence of all parameters must be
+tested too, while other methods to minimize the residuals must be regarded. The
+number of outer iterations to minimize should become adaptative to improve the
+overall performances of the proposal. Finally, this solver will be implemented
+inside PETSc. This would be very interesting because it would allow us to test
+all the non-linear examples and compare our algorithm with the other algorithm
+implemented in PETSc.
% conference papers do not normally have an appendix