%\title{???}
+
+
+
% author names and affiliations
% use a multiple column layout for up to two different
% affiliations
% no \IEEEPARstart
% You must have at least 2 lines in the paragraph with the drop letter
% (should never be an issue)
+{\bf RAPH : EST ce qu'on parle de Krylov pour dire que les résidus constituent une base de Krylov... J'hésite... Tof t'en penses quoi?}
Iterative methods are become more attractive than direct ones to solve very
large sparse linear systems. They are more effective in a parallel context and
require less memory and arithmetic operations than direct methods. A number of
\end{table*}
+\begin{table*}
+\begin{center}
+\begin{tabular}{|r|r|r|r|r|r|r|r|r|}
+\hline
+
+ nb. cores & threshold & \multicolumn{2}{c|}{gmres variant} & \multicolumn{2}{c|}{2 stage CGLS} & \multicolumn{2}{c|}{2 stage LSQR} & best gain \\
+\cline{3-8}
+ & & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline
+ 8,192 & 6e-5 & 149.54 & 17,280 & 28.68 & 3,810 & 29.05 & 3,990 & 5.21 \\
+ 8,192 & 5e-5 & 792.11 & 109,590 & 76.83 & 10,470 & 65.20 & 9,030 & 12.14 \\
+ 16,384 & 4e-5 & 718.61 & 86,400 & 98.98 & 10,830 & 131.86 & 14,790 & 7.26 \\
+\hline
+\end{tabular}
+\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25000 components per core on Curie (restart=30, s=12), time is expressed in seconds.}
+\label{tab:04}
+\end{center}
+\end{table*}
%%%*********************************************************
%%%*********************************************************
future plan : \\
- study other kinds of matrices, problems, inner solvers\\
- adaptative number of outer iterations to minimize\\
+- other methods to minimize the residuals?\\
- implement our solver inside PETSc